Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure
文献类型:期刊论文
作者 | Cao, Ruqing2; Yu, Qin1; Li, Yi2; Ritchie, Robert O.1 |
刊名 | JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
![]() |
出版日期 | 2021-11-01 |
卷号 | 15页码:901-910 |
关键词 | Electroplating Nickel Gradient structure Ductility Fracture toughness |
ISSN号 | 2238-7854 |
DOI | 10.1016/j.jmrt.2021.08.102 |
通讯作者 | Li, Yi(liyi@imr.ac.cn) ; Ritchie, Robert O.(roritchie@lbl.gov) |
英文摘要 | Nature-inspired gradients can be implemented in metallic materials to achieve a synergy of strength and ductility. However, due to the small (often microscale) size of the gradient structured samples, their fracture properties have remained relatively unexplored. By fabricating centimeter-sized gradient-structured pure nickel samples using direct-current electroplating technique, we demonstrate that a dual-gradient architecture in pure nickel, comprising grain-size transitions from coarse grains to nano grains and then back to coarse grains (CG -> NG -> CG), achieves an optimized combination of strength-ductility synergy and exceptional fracture resistance a crack-initiation toughness exceeding 300 MPa m(1/2) - while minimizing the problem of final unstable catastrophic failure. Significantly, this dual-gradient CG -> NG -> CG structure can effectively arrest any brittle fracture in the nano grains by inducing a stable rising R-curve with an enhanced crack growth toughness exceeding 350 MPa m(1/2). We believe that this dual-gradient CG -> NG -> CG structure provides a promising prototype for designing multi-layer graded structures with exceptional combinations of mechanical properties which can be readily tuned to meet the advanced requirements of safety-critical applications. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
资助项目 | National Key Research and Development Program of China[2017YFB0702003] ; National Natural Science Foundation of China[51471165] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
语种 | 英语 |
WOS记录号 | WOS:000734202600012 |
出版者 | ELSEVIER |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China |
源URL | [http://ir.imr.ac.cn/handle/321006/173835] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Li, Yi; Ritchie, Robert O. |
作者单位 | 1.Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA 2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Cao, Ruqing,Yu, Qin,Li, Yi,et al. Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure[J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T,2021,15:901-910. |
APA | Cao, Ruqing,Yu, Qin,Li, Yi,&Ritchie, Robert O..(2021).Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure.JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T,15,901-910. |
MLA | Cao, Ruqing,et al."Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure".JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T 15(2021):901-910. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。