Toward improved urban earthquake monitoring through deep-learning-based noise suppression
文献类型:期刊论文
作者 | Yang, Lei1,2; Liu, Xin1,3; Zhu, Weiqiang1; Zhao, Liang2; Beroza, Gregory C.1 |
刊名 | SCIENCE ADVANCES
![]() |
出版日期 | 2022-04-01 |
卷号 | 8期号:15页码:9 |
ISSN号 | 2375-2548 |
DOI | 10.1126/sciadv.abl3564 |
英文摘要 | Earthquake monitoring in urban settings is essential but challenging, due to the strong anthropogenic noise inherent to urban seismic recordings. Here, we develop a deep-learning-based denoising algorithm, UrbanDenoiser, to filter out urban seismological noise. UrbanDenoiser strongly suppresses noise relative to the signals, because it was trained using waveform datasets containing rich noise sources from the urban Long Beach dense array and high signal-to-noise ratio (SNR) earthquake signals from the rural San Jacinto dense array. Application to the dense array data and an earthquake sequence in an urban area shows that UrbanDenoiser can increase signal quality and recover signals at an SNR level down to similar to 0 dB. Earthquake location using our denoised Long Beach data does not support the presence of mantle seismicity beneath Los Angeles but suggests a fault model featuring shallow creep, intermediate locking, and localized stress concentration at the base of the seismogenic zone. |
WOS关键词 | DENSE SEISMIC ARRAY ; SOUTHERN CALIFORNIA ; LONG BEACH ; FAULT ; ALGORITHM ; BENEATH ; TIME |
资助项目 | National Natural Science Foundation of China[41888101] ; National Natural Science Foundation of China[41625016] ; National Natural Science Foundation of China[41904060] ; US Geological Survey[G20AP00015] ; Department of Energy (Basic Energy Sciences)[DE-SC0020445] |
WOS研究方向 | Science & Technology - Other Topics |
语种 | 英语 |
WOS记录号 | WOS:000786201300016 |
出版者 | AMER ASSOC ADVANCEMENT SCIENCE |
资助机构 | National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; US Geological Survey ; US Geological Survey ; US Geological Survey ; US Geological Survey ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; US Geological Survey ; US Geological Survey ; US Geological Survey ; US Geological Survey ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; US Geological Survey ; US Geological Survey ; US Geological Survey ; US Geological Survey ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; US Geological Survey ; US Geological Survey ; US Geological Survey ; US Geological Survey ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) ; Department of Energy (Basic Energy Sciences) |
源URL | [http://ir.iggcas.ac.cn/handle/132A11/105147] ![]() |
专题 | 地质与地球物理研究所_岩石圈演化国家重点实验室 |
通讯作者 | Zhao, Liang; Beroza, Gregory C. |
作者单位 | 1.Stanford Univ, Dept Geophys, Stanford, CA 94305 USA 2.Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher Evolut, Beijing, Peoples R China 3.JAMSTEC YES, Kanazawa Ku, 3173-25 Showa Machi, Yokohama, Kanagawa 2360001, Japan |
推荐引用方式 GB/T 7714 | Yang, Lei,Liu, Xin,Zhu, Weiqiang,et al. Toward improved urban earthquake monitoring through deep-learning-based noise suppression[J]. SCIENCE ADVANCES,2022,8(15):9. |
APA | Yang, Lei,Liu, Xin,Zhu, Weiqiang,Zhao, Liang,&Beroza, Gregory C..(2022).Toward improved urban earthquake monitoring through deep-learning-based noise suppression.SCIENCE ADVANCES,8(15),9. |
MLA | Yang, Lei,et al."Toward improved urban earthquake monitoring through deep-learning-based noise suppression".SCIENCE ADVANCES 8.15(2022):9. |
入库方式: OAI收割
来源:地质与地球物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。