Clustering and Dynamic Sampling Based Unsupervised Domain Adaptation for Person Re-Identification
文献类型:会议论文
作者 | Wu JL(吴锦林)3,4![]() ![]() ![]() ![]() ![]() |
出版日期 | 2019 |
会议日期 | 2019-10 |
会议地点 | 中国-上海 |
英文摘要 | Person Re-Identifification (Re-ID) has witnessed great im
provements due to the advances of the deep convolutional
neural networks (CNN). Despite this, existing methods
mainly suffer from the poor generalization ability to unseen
persons because of the different characteristics between dif
ferent domains. To address this issue, a Clustering and Dy
namic Sampling (CDS) method is proposed in this paper,
which tries to transfer the useful knowledge of existing la
beled source domain to the unlabeled target one. Specififically,
to improve the discriminability of CNN model on source do
main, we use the commonly shared pedestrian attributes (e.g.,
gender, hat and clothing color etc.) to enrich the informa
tion and resort to the margin-based softmax (e.g., A-Softmax)
loss to train the model. For the unlabeled target domain, we
iteratively cluster the samples into several centers and dy
namically select informative ones from each center to fifine
tune the source-domain model. Extensive experiments on the
DukeMTMC-reID-reID and Market-1501 datasets show that
the proposed method largely improves the state of the arts in
unsupervised domain adaptation. |
会议录 | 2019 IEEE International Conference on Multimedia and Expo (ICME)
![]() |
源URL | [http://ir.ia.ac.cn/handle/173211/48971] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心 |
通讯作者 | Wang XB(王晓波) |
作者单位 | 1.京东AI研究院 2.Inception Institute of Artificial Intelligence (IIAI), 3.中国科学院大学 4.中国科学院自动化研究所,模式识别国家重点实验室,生物识别与安全技术中心 |
推荐引用方式 GB/T 7714 | Wu JL,Liao SC,Wang XB,et al. Clustering and Dynamic Sampling Based Unsupervised Domain Adaptation for Person Re-Identification[C]. 见:. 中国-上海. 2019-10. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。