Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting
文献类型:期刊论文
作者 | Li, Jun3![]() ![]() ![]() ![]() ![]() |
刊名 | INTERNATIONAL JOURNAL OF FATIGUE
![]() |
出版日期 | 2022-05-01 |
卷号 | 158页码:9 |
关键词 | Very-high-cycle fatigue (VHCF) Machine learning Selective laser melting (SLM) Fatigue life prediction Monte Carlo simulation (MCs) |
ISSN号 | 0142-1123 |
DOI | 10.1016/j.ijfatigue.2022.106764 |
通讯作者 | Yang, Zhengmao(zmyang@imech.ac.cn) ; Qian, Guian(qianguian@imech.ac.cn) |
英文摘要 | Few machine learning (ML) models were applied for very-high-cycle fatigue (VHCF) analysis and these methods encounter limitations in data sparsity and overfitting. The present work aims to overcome data sparsity and propose an easy-to-use and nonredundant ML model for VHCF analysis. Monte Carlo simulation (MCs) is run to enlarge dataset size and a ML method is proposed to investigate the synergic influence of defect size, depth, location and build orientation on Ti-6Al-4V. The coefficient factor that indicates the percentage variation between the predicted and experimental fatigue lives can reach up to 0.98, meaning that the model demonstrates good prediction accuracy. |
WOS关键词 | MECHANICAL-PROPERTIES ; MODEL ; BEHAVIOR ; INDUSTRY |
资助项目 | NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics[11988102] ; National Natural Science Foundation of China[11872364] ; National Natural Science Foundation of China[11932020] ; National Natural Science Foundation of China[12072345] ; National Science and Technology Major Project[J2019-VI-0012-0126] ; CAS Pioneer Hundred Talents Program |
WOS研究方向 | Engineering ; Materials Science |
语种 | 英语 |
WOS记录号 | WOS:000792830500007 |
资助机构 | NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics ; National Natural Science Foundation of China ; National Science and Technology Major Project ; CAS Pioneer Hundred Talents Program |
源URL | [http://dspace.imech.ac.cn/handle/311007/89336] ![]() |
专题 | 宽域飞行工程科学与应用中心 力学研究所_非线性力学国家重点实验室 |
通讯作者 | Yang, Zhengmao; Qian, Guian |
作者单位 | 1.Norwegian Univ Sci & Technol NTNU, Dept Mech & Ind Engn, Richard Birkelands Vei 2b, N-7491 Trondheim, Norway 2.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Jun,Yang, Zhengmao,Qian, Guian,et al. Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting[J]. INTERNATIONAL JOURNAL OF FATIGUE,2022,158:9. |
APA | Li, Jun,Yang, Zhengmao,Qian, Guian,Berto, Filippo,钱桂安,&杨正茂.(2022).Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting.INTERNATIONAL JOURNAL OF FATIGUE,158,9. |
MLA | Li, Jun,et al."Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting".INTERNATIONAL JOURNAL OF FATIGUE 158(2022):9. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。