中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting

文献类型:期刊论文

作者Li, Jun3; Yang, Zhengmao3; Qian, Guian2,3; Berto, Filippo1; Qian GA(钱桂安); Yang ZM(杨正茂)
刊名INTERNATIONAL JOURNAL OF FATIGUE
出版日期2022-05-01
卷号158页码:9
关键词Very-high-cycle fatigue (VHCF) Machine learning Selective laser melting (SLM) Fatigue life prediction Monte Carlo simulation (MCs)
ISSN号0142-1123
DOI10.1016/j.ijfatigue.2022.106764
通讯作者Yang, Zhengmao(zmyang@imech.ac.cn) ; Qian, Guian(qianguian@imech.ac.cn)
英文摘要Few machine learning (ML) models were applied for very-high-cycle fatigue (VHCF) analysis and these methods encounter limitations in data sparsity and overfitting. The present work aims to overcome data sparsity and propose an easy-to-use and nonredundant ML model for VHCF analysis. Monte Carlo simulation (MCs) is run to enlarge dataset size and a ML method is proposed to investigate the synergic influence of defect size, depth, location and build orientation on Ti-6Al-4V. The coefficient factor that indicates the percentage variation between the predicted and experimental fatigue lives can reach up to 0.98, meaning that the model demonstrates good prediction accuracy.
WOS关键词MECHANICAL-PROPERTIES ; MODEL ; BEHAVIOR ; INDUSTRY
资助项目NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics[11988102] ; National Natural Science Foundation of China[11872364] ; National Natural Science Foundation of China[11932020] ; National Natural Science Foundation of China[12072345] ; National Science and Technology Major Project[J2019-VI-0012-0126] ; CAS Pioneer Hundred Talents Program
WOS研究方向Engineering ; Materials Science
语种英语
WOS记录号WOS:000792830500007
资助机构NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics ; National Natural Science Foundation of China ; National Science and Technology Major Project ; CAS Pioneer Hundred Talents Program
源URL[http://dspace.imech.ac.cn/handle/311007/89336]  
专题宽域飞行工程科学与应用中心
力学研究所_非线性力学国家重点实验室
通讯作者Yang, Zhengmao; Qian, Guian
作者单位1.Norwegian Univ Sci & Technol NTNU, Dept Mech & Ind Engn, Richard Birkelands Vei 2b, N-7491 Trondheim, Norway
2.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Jun,Yang, Zhengmao,Qian, Guian,et al. Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting[J]. INTERNATIONAL JOURNAL OF FATIGUE,2022,158:9.
APA Li, Jun,Yang, Zhengmao,Qian, Guian,Berto, Filippo,钱桂安,&杨正茂.(2022).Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting.INTERNATIONAL JOURNAL OF FATIGUE,158,9.
MLA Li, Jun,et al."Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting".INTERNATIONAL JOURNAL OF FATIGUE 158(2022):9.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。