A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications
文献类型:期刊论文
作者 | He, Yuyang9,10; Zhou, You7,8; Wen, Tao6; Zhang, Shuang5; Huang, Fang4![]() |
刊名 | APPLIED GEOCHEMISTRY
![]() |
出版日期 | 2022-05-01 |
卷号 | 140页码:13 |
关键词 | LIBS XAFS Mapping Water soil prediction Molecular machine learning Reactive-transport modeling |
ISSN号 | 0883-2927 |
DOI | 10.1016/j.apgeochem.2022.105273 |
通讯作者 | He, Yuyang(yhe@mail.iggcas.ac.cn) |
英文摘要 | The development of analytical and computational techniques and growing scientific funds collectively contribute to the rapid accumulation of geoscience data. The massive amount of existing data, the increasing complexity, and the rapid acquisition rates require novel approaches to efficiently discover scientific stories embedded in the data related to geochemistry and cosmochemistry. Machine learning methods can discover and describe the hidden patterns in intricate geochemical and cosmochemical big data. In recent years, considerable efforts have been devoted to the applications of machine learning methods in geochemistry and cosmochemistry. Here, we review the main applications including rock and sediment identification, digital mapping, water and soil quality prediction, and deep space exploration. Research method improvements, such as spectroscopy interpretation, numerical modeling, and molecular machine learning, are also discussed. Based on the up-to-date machine learning/deep learning techniques, we foresee the vast opportunities of implementing artificial intelligence and developing databases in geochemistry and cosmochemistry studies, as well as communicating geochemists/ cosmochemists and data scientists. |
WOS关键词 | INDUCED BREAKDOWN SPECTROSCOPY ; REACTIVE TRANSPORT MODELS ; UNDISCOVERED MINERAL-DEPOSITS ; ARTIFICIAL NEURAL-NETWORKS ; SUPPORT VECTOR MACHINE ; RANDOM FOREST ; CENTRAL VALLEY ; WATER-QUALITY ; THEORETICAL CALCULATION ; ISOTOPE FRACTIONATIONS |
资助项目 | National Science Foundation of China (NSFC)[42150202] ; National Science Foundation of China (NSFC)[4217030170] ; China Postdoctoral Science Foundation[2019M660811] ; pre-research project on Civil Aerospace Technologies of China National Space Administration[D020203] ; NSFC[41973063] ; NSFC[42011530431] ; Earth Science Information Partners Lab Grant[05088] ; NSFC project[42003021] ; NSFC project[2126315] ; U.S. National Science Foundation (NSF)[41872253] |
WOS研究方向 | Geochemistry & Geophysics |
语种 | 英语 |
WOS记录号 | WOS:000799841900004 |
资助机构 | National Science Foundation of China (NSFC) ; China Postdoctoral Science Foundation ; pre-research project on Civil Aerospace Technologies of China National Space Administration ; NSFC ; Earth Science Information Partners Lab Grant ; NSFC project ; U.S. National Science Foundation (NSF) |
源URL | [http://dspace.imech.ac.cn/handle/311007/89573] ![]() |
专题 | 力学研究所_高温气体动力学国家重点实验室 |
通讯作者 | He, Yuyang |
作者单位 | 1.Minist Emergency Management Peoples Republ China, Natl Inst Nat Hazards, Beijing 100085, Peoples R China 2.Univ Idaho, Comp Sci Dept, 875 Perimeter Dr, MS 1010, Moscow, ID 83844 USA 3.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Mineral Resources, Beijing 100029, Peoples R China 4.CSIRO Mineral Resources, Kensington, WA 6151, Australia 5.Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA 6.Syracuse Univ, Dept Earth & Environm Sci, Syracuse, NY 13244 USA 7.CAS Ctr Excellence Comparat Planetol, Hefei 230026, Peoples R China 8.Chengdu Univ Technol, Coll Earth Sci, Int Res Ctr Planetary Sci, 61005, Chengdu, Peoples R China 9.Chinese Acad Sci, Inst Mech, State Key Lab High Temp Gas Dynam, Beijing 100190, Peoples R China 10.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Earth & Planetary Phys, Beijing 100029, Peoples R China |
推荐引用方式 GB/T 7714 | He, Yuyang,Zhou, You,Wen, Tao,et al. A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications[J]. APPLIED GEOCHEMISTRY,2022,140:13. |
APA | He, Yuyang.,Zhou, You.,Wen, Tao.,Zhang, Shuang.,Huang, Fang.,...&Zhu, Yueqin.(2022).A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications.APPLIED GEOCHEMISTRY,140,13. |
MLA | He, Yuyang,et al."A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications".APPLIED GEOCHEMISTRY 140(2022):13. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。