中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Structure of Sea Surface Temperature Anomaly Induced by Mesoscale Eddies in the North Pacific Ocean

文献类型:期刊论文

作者Lv, Mingkun2,3; Wang, Fan2,3,4; Li, Yuanlong1,2,4; Zhang, Zhengguang4,5; Zhu, Yanan2,4
刊名JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
出版日期2022-03-01
卷号127期号:3页码:20
ISSN号2169-9275
DOI10.1029/2021JC017581
通讯作者Wang, Fan(fwang@qdio.ac.cn) ; Li, Yuanlong(liyuanlong@qdio.ac.cn)
英文摘要Sea surface temperature anomalies (SSTAs) induced by oceanic mesoscale eddies trigger mesoscale air-sea interactions and modulate large-scale climate systems. Yet, how eddies drive SSTAs has not been firmly established; particularly, the relative importance of lateral stirring and vertical pumping remains a debated issue. This study investigates characteristics and generation mechanisms of mesoscale eddy SSTAs in three eddy-enriched domains of the North Pacific Ocean: the Kuroshio Extension (KET), the Subtropical Countercurrent (STCC), and the North Equatorial Countercurrent (NECC). Analysis of satellite observational data reveals quasi-monopole eddy SSTAs in the KET and NECC and dipole-like eddy SSTAs in the STCC. By investigating spatial and seasonal variations and performing sensitivity experiments using an idealized model, we demonstrate that lateral stirring plays a more important role than vertical pumping in causing mesoscale eddy SSTAs. The eastward transport by the strong background current U-C (similar to 0.6 and similar to 0.4 m s(-1) in the KET and the NECC, respectively) and the westward eddy translation U-C (similar to-0.2 m s(-1) in the NECC) can dramatically modify the structure of SSTA. The pure stirring effect of eddy rotation velocities generates strong dipole-like SSTAs. Owing to the eastward U-C and the westward U-T, the western SSTA pole tends to approach the eddy center, while the eastern SSTA pole departs from the eddy and scatters along the eddy trajectory. These effects reduce the eddy SSTA amplitude and favor the emergence of quasi-monopole structure. This work provides a useful benchmark for model simulations of mesoscale SST variability and air-sea interaction. Plain Language Summary Mesoscale sea surface temperature anomalies (SSTAs) of tens to hundreds of kilometers induced by oceanic eddies are one of the most striking features of satellite SST images. Yet, we still have no firm answer to the question as to how eddies drive SSTAs. Particularly, whether the eddy SSTAs are induced by lateral stirring or vertical pumping is unknown. Here, by analyzing satellite data, we identify both monopole-like (a single warming/cooling core within the eddy) and dipole-like (a pair of opposite-sign anomaly patches) eddy SSTAs in the North Pacific, and they are both intimately associated with the lateral stirring of eddies. We further demonstrate that the existence of eastward background current and westward movement of eddies are favorable for the generation of such quasi-monopole SSTAs. While the pure stirring effect of the eddy rotation produces dipole-like SSTAs, the eastward U c and the westward U T gradually push the western SSTA pole toward the eddy center and finally give rise to quasi-monopole SSTA structure. In addition to insights into the mechanisms, our work provides useful knowledge for the simulation of mesoscale SST variability and air-sea interaction by climate models.
资助项目Strategic Priority Research Program of Chinese Academy of Sciences[XDB42000000] ; National Key R&D Program of China[2017YFA0603200] ; National Natural Science Foundation of China[42022041] ; Shandong Provincial Natural Science Foundation[ZR2020JQ17] ; Key Deployment Project of CAS Centre for Ocean Mega-Science[COMS2019Q07]
WOS研究方向Oceanography
语种英语
出版者AMER GEOPHYSICAL UNION
WOS记录号WOS:000776507900043
源URL[http://ir.qdio.ac.cn/handle/337002/178603]  
专题海洋研究所_海洋环流与波动重点实验室
通讯作者Wang, Fan; Li, Yuanlong
作者单位1.CAS Ctr Excellence Quaternary Sci & Global Change, Xian, Peoples R China
2.Chinese Acad Sci, Inst Oceanol & Ctr Ocean Mega Sci, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Pilot Natl Lab Marine Sci & Technol Qingdao, Funct Lab Ocean Dynam & Climate, Qingdao, Peoples R China
5.Ocean Univ China, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Phys Oceanog Lab, Qingdao, Peoples R China
推荐引用方式
GB/T 7714
Lv, Mingkun,Wang, Fan,Li, Yuanlong,et al. Structure of Sea Surface Temperature Anomaly Induced by Mesoscale Eddies in the North Pacific Ocean[J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,2022,127(3):20.
APA Lv, Mingkun,Wang, Fan,Li, Yuanlong,Zhang, Zhengguang,&Zhu, Yanan.(2022).Structure of Sea Surface Temperature Anomaly Induced by Mesoscale Eddies in the North Pacific Ocean.JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,127(3),20.
MLA Lv, Mingkun,et al."Structure of Sea Surface Temperature Anomaly Induced by Mesoscale Eddies in the North Pacific Ocean".JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 127.3(2022):20.

入库方式: OAI收割

来源:海洋研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。