Carbon price prediction considering climate change: A text-based framework
文献类型:期刊论文
作者 | Xie, Qiwei2![]() ![]() |
刊名 | ECONOMIC ANALYSIS AND POLICY
![]() |
出版日期 | 2022-06-01 |
卷号 | 74页码:382-401 |
关键词 | Carbon price prediction Text mining Climate change Long short-term memory (LSTM) Random forest (RF) |
ISSN号 | 0313-5926 |
DOI | 10.1016/j.eap.2022.02.010 |
通讯作者 | Li, Jingyu(lijy@bjut.edu.cn) |
英文摘要 | Carbon trading is a vital market mechanism to achieve carbon emission reduction. The accurate prediction of the carbon price is conducive to the effective management and decision-making of the carbon trading market. However, existing research on carbon price forecasting has ignored the impacts of multiple factors on the carbon price, especially climate change. This study proposes a text-based framework for carbon price prediction that considers the impact of climate change. Textual online news is innovatively employed to construct a climate-related variable. The information is combined with other variables affecting the carbon price to forecast the carbon price, using a long short-term memory network and random forest model. The results demonstrate that the prediction accuracy of the carbon price in the Hubei and Guangdong carbon markets is enhanced by adding the textual variable that measures climate change. (C)& nbsp;2022 Economic Society of Australia, Queensland. Published by Elsevier B.V. All rights reserved. |
WOS关键词 | EU-ETS ; CHINA ; MARKET ; VOLATILITY ; EMISSIONS ; IMPACTS ; POLICY ; IDENTIFICATION ; SPILLOVERS ; INTERVAL |
资助项目 | National Natural Science Foundation of China[61673381] ; Key programs of social science of Beijing Municipal Education Commission[SZ202210005004] ; Natural Science Foundation of Beijing[9202002] ; State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences ; Beijing Postdoctoral Research Foundation[2021-zz-168] ; Ministry of Science and Technology of China[2020AAA0108401] ; Ministry of Science and Technology of China[2019QY(Y)0101] ; China Postdoctoral Science Foundation[2020M680281] |
WOS研究方向 | Business & Economics |
语种 | 英语 |
WOS记录号 | WOS:000792955200002 |
出版者 | ELSEVIER |
资助机构 | National Natural Science Foundation of China ; Key programs of social science of Beijing Municipal Education Commission ; Natural Science Foundation of Beijing ; State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences ; Beijing Postdoctoral Research Foundation ; Ministry of Science and Technology of China ; China Postdoctoral Science Foundation |
源URL | [http://ir.ia.ac.cn/handle/173211/49434] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心 |
通讯作者 | Li, Jingyu |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Beijing Univ Technol, Sch Econ & Management, 100 Pingleyuan, Beijing 100124, Peoples R China |
推荐引用方式 GB/T 7714 | Xie, Qiwei,Hao, Jingjing,Li, Jingyu,et al. Carbon price prediction considering climate change: A text-based framework[J]. ECONOMIC ANALYSIS AND POLICY,2022,74:382-401. |
APA | Xie, Qiwei,Hao, Jingjing,Li, Jingyu,&Zheng, Xiaolong.(2022).Carbon price prediction considering climate change: A text-based framework.ECONOMIC ANALYSIS AND POLICY,74,382-401. |
MLA | Xie, Qiwei,et al."Carbon price prediction considering climate change: A text-based framework".ECONOMIC ANALYSIS AND POLICY 74(2022):382-401. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。