Deep learning for improving the spatial resolution of magnetic particle imaging
文献类型:期刊论文
作者 | Shang, Yaxin4,5,6; Liu, Jie6![]() ![]() ![]() ![]() ![]() |
刊名 | PHYSICS IN MEDICINE AND BIOLOGY
![]() |
出版日期 | 2022-06-21 |
卷号 | 67期号:12页码:14 |
关键词 | deep learning magnetic particle imaging spatial resolution superparamagnetic iron oxide nanoparticles |
ISSN号 | 0031-9155 |
DOI | 10.1088/1361-6560/ac6e24 |
通讯作者 | Liu, Jie(jieliu@bjtu.edu.cn) ; Hui, Hui(hui.hui@ia.ac.cn) ; Tian, Jie(tian@ieee.org) |
英文摘要 | Objective. Magnetic particle imaging (MPI) is a new medical, non-destructive, imaging method for visualizing the spatial distribution of superparamagnetic iron oxide nanoparticles. In MPI, spatial resolution is an important indicator of efficiency; traditional techniques for improving the spatial resolution may result in higher costs, lower sensitivity, or reduced contrast. Approach. Therefore, we propose a deep-learning approach to improve the spatial resolution of MPI by fusing a dual-sampling convolutional neural network (FDS-MPI). An end-to-end model is established to generate high-spatial-resolution images from low-spatial-resolution images, avoiding the aforementioned shortcomings. Main results. We evaluate the performance of the proposed FDS-MPI model through simulation and phantom experiments. The results demonstrate that the FDS-MPI model can improve the spatial resolution by a factor of two. Significance. This significant improvement in MPI could facilitate the preclinical application of medical imaging modalities in the future. |
WOS关键词 | LOW-DOSE CT ; MRI ; SENSITIVITY ; NETWORK ; MPI |
资助项目 | National Key Research and Development Program of China[2017YFA0700401] ; National Natural Science Foundation of China[62027901] ; National Natural Science Foundation of China[81827808] ; National Natural Science Foundation of China[81527805] ; National Natural Science Foundation of China[81571836] ; National Natural Science Foundation of China[81671851] ; National Natural Science Foundation of China[KKA309004533] ; National Natural Science Foundation of China[81227901] ; CAS Youth Innovation Promotion Association[2018167] ; CAS Key Technology Talent Program ; Project of High-Level Talents Team Introduction in Zhuhai City[Zhuhai HLHPTP201703] |
WOS研究方向 | Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
语种 | 英语 |
WOS记录号 | WOS:000808275200001 |
出版者 | IOP Publishing Ltd |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China ; CAS Youth Innovation Promotion Association ; CAS Key Technology Talent Program ; Project of High-Level Talents Team Introduction in Zhuhai City |
源URL | [http://ir.ia.ac.cn/handle/173211/49572] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | Liu, Jie; Hui, Hui; Tian, Jie |
作者单位 | 1.Jinan Univ, Zhuhai Precis Med Ctr, Zhuhai Peoples Hosp, Zhuhai 519000, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100080, Peoples R China 3.Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Engn Med, Beijing 100083, Peoples R China 4.Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China 5.Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China 6.Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100069, Peoples R China |
推荐引用方式 GB/T 7714 | Shang, Yaxin,Liu, Jie,Zhang, Liwen,et al. Deep learning for improving the spatial resolution of magnetic particle imaging[J]. PHYSICS IN MEDICINE AND BIOLOGY,2022,67(12):14. |
APA | Shang, Yaxin.,Liu, Jie.,Zhang, Liwen.,Wu, Xiangjun.,Zhang, Peng.,...&Tian, Jie.(2022).Deep learning for improving the spatial resolution of magnetic particle imaging.PHYSICS IN MEDICINE AND BIOLOGY,67(12),14. |
MLA | Shang, Yaxin,et al."Deep learning for improving the spatial resolution of magnetic particle imaging".PHYSICS IN MEDICINE AND BIOLOGY 67.12(2022):14. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。