中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
New Insights into Unexpected Severe PM2.5 Pollution during the SARS and COVID-19 Pandemic Periods in Beijing

文献类型:期刊论文

作者Zuo, Peijie1,2; Zong, Zheng3,4; Zheng, Bo5; Bi, Jianzhou2; Zhang, Qinghua1; Li, Wei6; Zhang, Jingwei7; Yang, Xuezhi1; Chen, Zigu1; Yang, Hang
刊名ENVIRONMENTAL SCIENCE & TECHNOLOGY
出版日期2021-12-15
页码10
ISSN号0013-936X
关键词PM (2.5) SARS COVID-19 copper isotope primary emission
DOI10.1021/acs.est.1c05383
通讯作者Lu, Dawei(dwlu@rcees.ac.cn)
英文摘要During the SARS period in 2003 and COVID-19 pandemic period in 2020, unexpected severe particulate matter pollution occurred in northern China, although the anthropogenic activities and associated emissions have assumed to be reduced dramatically. This anomalistic increase in PM is pollution raises a question about how source emissions impact the air quality during these pandemic periods. In this study, we investigated the stable Cu and Si isotopic compositions and typical source-specific fingerprints of PM2.5 and its sources. We show that the primary PM2.5 emissions (PM2.5 emitted directly from sources) actually had no reduction but redistribution during these pandemic periods, rather than the previous thought of being greatly reduced. This finding provided critical evidence to interpret the anomalistic PM2.5 increase during the pandemic periods in north China. Our results also suggested that both the energy structure adjustment and stringent regulations on primary emissions should be synergistically implemented in a regional scale for clean air actions in China.
WOS关键词PARTICULATE MATTER ; ISOTOPE FRACTIONATION ; SOURCE IDENTIFICATION ; AIR-QUALITY ; COPPER ; METALS ; CHINA ; ZINC ; EVENTS ; TRENDS
WOS研究方向Engineering ; Environmental Sciences & Ecology
语种英语
WOS记录号WOS:000733837000001
资助机构National Natural Science Foundation of China ; Chinese Academy of Sciences ; Sanming Project of Medicine in Shenzhen
源URL[http://ir.yic.ac.cn/handle/133337/31303]  
专题烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室
烟台海岸带研究所_近岸生态与环境实验室
通讯作者Lu, Dawei
作者单位1.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing 100085, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Yantai Inst Coastal Zone Res, Key Lab Coastal Environm Proc & Ecol Remed, CAS, Yantai 264003, Shandong, Peoples R China
4.Chinese Acad Sci, Yantai 264003, Shandong, Peoples R China
5.Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Inst Environm & Ecol, Shenzhen 5518055, Peoples R China
6.Shandong Univ, Sch Control Sci & Engn, Inst Biomed Engn, Jinan 250061, Peoples R China
7.Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
推荐引用方式
GB/T 7714
Zuo, Peijie,Zong, Zheng,Zheng, Bo,et al. New Insights into Unexpected Severe PM2.5 Pollution during the SARS and COVID-19 Pandemic Periods in Beijing[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2021:10.
APA Zuo, Peijie.,Zong, Zheng.,Zheng, Bo.,Bi, Jianzhou.,Zhang, Qinghua.,...&Jiang, Guibin.(2021).New Insights into Unexpected Severe PM2.5 Pollution during the SARS and COVID-19 Pandemic Periods in Beijing.ENVIRONMENTAL SCIENCE & TECHNOLOGY,10.
MLA Zuo, Peijie,et al."New Insights into Unexpected Severe PM2.5 Pollution during the SARS and COVID-19 Pandemic Periods in Beijing".ENVIRONMENTAL SCIENCE & TECHNOLOGY (2021):10.

入库方式: OAI收割

来源:烟台海岸带研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。