Order-aware Human Interaction Manipulation
文献类型:会议论文
作者 | Luo, Mandi1,2![]() ![]() ![]() |
出版日期 | 2022-10 |
会议日期 | 2022.10.10-2022.10.14 |
会议地点 | Lisboa, Portugal |
英文摘要 | The majority of current techniques for pose transfer disregard the interactions between the transferred person and the surrounding instances, resulting in context inconsistency when applied to complicated situations. To tackle this issue, we propose InterOrderNet, a novel framework to perform order-aware interaction learning. The proposed InterOrderNet learns the relative order on the direction of the z-axis among instances to describe instance-level occlusions. Not only does learning this order guarantee the context consistency of human pose transfer, but it also enhances its generalization to natural scenes. Additionally, we present a novel unsupervised method, named Imitative Contrastive Learning, which sidesteps the requirements of order annotations. Existing pose transfer methods are easy to be integrated into the proposed InterOrderNet. Extensive experiments demonstrate that InterOrderNet enables these methods to perform interaction manipulation. |
源URL | [http://ir.ia.ac.cn/handle/173211/49667] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | He, Ran |
作者单位 | 1.NLPR, CAS 2.School of Artificial Intelligence, UCAS |
推荐引用方式 GB/T 7714 | Luo, Mandi,Cao, Jie,He, Ran. Order-aware Human Interaction Manipulation[C]. 见:. Lisboa, Portugal. 2022.10.10-2022.10.14. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。