中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Application of Large-Scale Molecular Prediction for Creating the Preferred Precursor Ions List to Enhance the Identification of Ginsenosides from the Flower Buds of Panax ginseng

文献类型:期刊论文

作者Zhang, Chunxia3; Liu, Meiyu3; Xu, Xiaoyan3; Wu, Jia3; Li, Xue3; Wang, Hongda3; Gao, Xiumei2,3; Guo, Dean1; Tian, Xiaoxuan3; Yang, Wenzhi3
刊名JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
出版日期2022-05-18
卷号70期号:19页码:5932-5944
关键词data-dependent acquisition precursor ions list molecular prediction mass defect filtering Q-Orbitrap Panax ginsengflower
ISSN号0021-8561
DOI10.1021/acs.jafc.2c01435
通讯作者Guo, Dean(gda5958@163.com) ; Tian, Xiaoxuan(tian_xiaoxuan@tjutcm.edu.cn) ; Yang, Wenzhi(wzyang0504@tjutcm.edu.cn)
英文摘要This work was designed to evaluate the coverage of data-dependent acquisition (DDA) extensively utilized in the untargeted metabolite/component identification in the food sciences and pharmaceutical analysis. Using saponins from the flower buds of Panax ginseng (PGF) as an example, precursor ions list (PIL)-including DDA on a Q-Orbitrap mass spectrometer could enable higher coverage than the other four MS2 acquisition approaches in characterizing PGF ginsenosides. A "Virtual Library of Ginsenoside" containing 13,536 ginsenoside molecules was established by C-language-programmed large-scale molecular prediction, which in combination with mass defect filtering could create a new PIL involving 1859 PGF saponin precursors. We could newly obtain the MS2 spectra of at least 17 components and characterize 36 ginsenosides with unknown masses, among the 164 compounds identified from PGF. Conclusively, a molecular-prediction-oriented PIL in DDA can assist to discover more potentially novel molecules benefiting to the development of functional foods and new drugs.
WOS关键词MASS-SPECTROMETRY ; CHALLENGES ; SAPONINS
资助项目Natural Science Foundation of Tianjin of China[20JCYBJC00060] ; National Natural Science Foundation of China[81872996] ; Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine[ZYYCXTD-C-202009]
WOS研究方向Agriculture ; Chemistry ; Food Science & Technology
语种英语
WOS记录号WOS:000800474100017
出版者AMER CHEMICAL SOC
源URL[http://119.78.100.183/handle/2S10ELR8/301210]  
专题中国科学院上海药物研究所
通讯作者Guo, Dean; Tian, Xiaoxuan; Yang, Wenzhi
作者单位1.Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai Res Ctr Modernizat Tradit Chinese Med, Natl Engn Lab TCM Standardizat Technol, Shanghai 201203, Peoples R China
2.Tianjin Univ Tradit Chinese Med, Key Lab Pharmacol Tradit Chinese Med Formulae, Minist Educ, Tianjin 301617, Peoples R China
3.Tianjin Univ Tradit Chinese Med, State Key Lab Component Based Chinese Med, Tianjin Key Lab TCM Chem & Anal, Tianjin 301617, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Chunxia,Liu, Meiyu,Xu, Xiaoyan,et al. Application of Large-Scale Molecular Prediction for Creating the Preferred Precursor Ions List to Enhance the Identification of Ginsenosides from the Flower Buds of Panax ginseng[J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY,2022,70(19):5932-5944.
APA Zhang, Chunxia.,Liu, Meiyu.,Xu, Xiaoyan.,Wu, Jia.,Li, Xue.,...&Yang, Wenzhi.(2022).Application of Large-Scale Molecular Prediction for Creating the Preferred Precursor Ions List to Enhance the Identification of Ginsenosides from the Flower Buds of Panax ginseng.JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY,70(19),5932-5944.
MLA Zhang, Chunxia,et al."Application of Large-Scale Molecular Prediction for Creating the Preferred Precursor Ions List to Enhance the Identification of Ginsenosides from the Flower Buds of Panax ginseng".JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 70.19(2022):5932-5944.

入库方式: OAI收割

来源:上海药物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。