A Latent Factor Analysis-Based Approach to Online Sparse Streaming Feature Selection
文献类型:期刊论文
作者 | Wu, Di1,2![]() ![]() |
刊名 | IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
![]() |
出版日期 | 2021-08-03 |
页码 | 15 |
关键词 | Big data computational intelligence latent factor analysis (LFA) missing data online algorithm online feature selection sparse streaming feature streaming feature |
ISSN号 | 2168-2216 |
DOI | 10.1109/TSMC.2021.3096065 |
通讯作者 | Luo, Xin(luoxin21@cigit.ac.cn) |
英文摘要 | Online streaming feature selection (OSFS) has attracted extensive attention during the past decades. Current approaches commonly assume that the feature space of fixed data instances dynamically increases without any missing data. However, this assumption does not always hold in many real applications. Motivated by this observation, this study aims to implement online feature selection from sparse streaming features, i.e., features flow in one by one with missing data as instance count remains fixed. To do so, this study proposes a latent-factor-analysis-based online sparse-streaming-feature selection algorithm (LOSSA). Its main idea is to apply latent factor analysis to pre-estimate missing data in sparse streaming features before conducting feature selection, thereby addressing the missing data issue effectively and efficiently. Theoretical and empirical studies indicate that LOSSA can significantly improve the quality of OSFS when missing data are encountered in target instances. |
资助项目 | National Natural Science Foundation of China[61702475] ; National Natural Science Foundation of China[61772493] ; National Natural Science Foundation of China[62002337] ; National Natural Science Foundation of China[61902370] ; Natural Science Foundation of Chongqing, China[cstc2019jcyjmsxmX0578] ; Natural Science Foundation of Chongqing, China[cstc2019jcyjjqX0013] ; Chinese Academy of Sciences Light of West China Program ; Technology Innovation and Application Development Project of Chongqing, China[cstc2018jszx-cyzdX0041] ; Technology Innovation and Application Development Project of Chongqing, China[cstc2019jscx-fxydX0027] ; CAAI-Huawei MindSpore Open Fund[CAAIXSJLJJ-2020004B] ; Pioneer Hundred Talents Program of Chinese Academy of Sciences |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000732087500001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.138/handle/2HOD01W0/14773] ![]() |
专题 | 中国科学院重庆绿色智能技术研究院 |
通讯作者 | Luo, Xin |
作者单位 | 1.Chinese Acad Sci, Chongqing Engn Res Ctr Big Data Applicat Smart Ci, Chongqing 400714, Peoples R China 2.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China 3.Old Dominion Univ, Dept Comp Sci, Norfolk, VA 23462 USA 4.Cloudwalk, Dept Big Data Anal Tech, Hengrui Chongqing Artificial Intelligence Res Ctr, Chongqing 401331, Peoples R China 5.New Jersey Inst Technol, Helen & John C Hartmann Dept Elect & Comp Engn, Newark, NJ 07102 USA 6.Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China 7.Macau Univ Sci & Technol, Collaborat Lab Intelligent Sci & Syst, Macau 999078, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Di,He, Yi,Luo, Xin,et al. A Latent Factor Analysis-Based Approach to Online Sparse Streaming Feature Selection[J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,2021:15. |
APA | Wu, Di,He, Yi,Luo, Xin,&Zhou, MengChu.(2021).A Latent Factor Analysis-Based Approach to Online Sparse Streaming Feature Selection.IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,15. |
MLA | Wu, Di,et al."A Latent Factor Analysis-Based Approach to Online Sparse Streaming Feature Selection".IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS (2021):15. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。