Noise-Suppressing Neural Dynamics for Time-Dependent Constrained Nonlinear Optimization With Applications
文献类型:期刊论文
作者 | Wei, Lin2; Jin, Long2; Luo, Xin1,3![]() |
刊名 | IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
![]() |
出版日期 | 2022-01-05 |
页码 | 12 |
关键词 | Optimization Mathematical models Analytical models Convergence Principal component analysis Time-varying systems Nonlinear equations Constrained nonlinear optimization dimensionality reduction on principal component analyses (PCA) equality and inequality constraints neural dynamics noise suppression robot arm control |
ISSN号 | 2168-2216 |
DOI | 10.1109/TSMC.2021.3138550 |
通讯作者 | Jin, Long(longjin@ieee.org) ; Luo, Xin(luoxin21@cigit.ac.cn) |
英文摘要 | Up to date, the existing methods for nonlinear optimization with time-dependent parameters can be classified into two types: 1) static methods are capable of handling inequality constraints but may generate large lagging errors in the solution of the intrinsically time-dependent constrained nonlinear optimization (TDCNO) problem due to the hypothesis of short-time invariance and 2) time-variant methods, e.g., zeroing neural networks, are able to remedy the lagging error but fail to solve the TDCNO problem under inequality constraints. To resolve this contradiction, a noise-suppressing neural dynamics (NSND) model is proposed to solve the TDCNO problem subject to both equality and inequality constraints via the nonlinear complementary problem (NCP) function. The proposed method allows inequality constraints for unknown variables, removes the short-time invariance hypothesis, and further eliminates lagging errors during the solving process in the presence of noises. Besides, the rapid convergence, global stability, and noise processing of the NSND model are verified by the theoretical analyses. Simulation results of illustrative examples, including dimensionality reduction on principal component analyses (PCA) and a robot motion control, show that the NSND model outperforms the existing models for the TDCNO problem. |
资助项目 | National Natural Science Foundation of China[62176109] ; Natural Science Foundation of Gansu Province[21JR7RA531] ; Natural Science Foundation of Gansu Province[20JR10RA639] ; Special Projects of the Centra Government in Guidance of Local Science and Technology Development ; Team Project of Natural Science Foundation of Qinghai Province (China)[2020-ZJ-903] ; Key Laboratory of IoT of Qinghai[2020-ZJ-Y16] ; Gansu Provincial Youth Doctoral Fund of Colleges and Universities[2021QB-003] ; Fundamental Research Funds for the Central Universities[lzujbky2021-it36] ; Fundamental Research Funds for the Central Universities[lzujbky-2021-65] ; Supercomputing Center of Lanzhou University ; Science and Technology Project of Chengguan District of Lanzhou[2021-1-2] ; Science and Technology Project of Chengguan District of Lanzhou[2021-7-1] ; Gansu Provincial Department of Education: Outstanding Graduate Student Star of Innovation Project[2021CXZX-033] ; Pioneer Hundred Talents Program of Chinese Academy of Sciences |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000740072100001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.138/handle/2HOD01W0/14981] ![]() |
专题 | 中国科学院重庆绿色智能技术研究院 |
通讯作者 | Jin, Long; Luo, Xin |
作者单位 | 1.Chinese Acad Sci, Chongqing Engn Res Ctr Big Data Applicat Smart Ci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China 2.Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China 3.Chinese Acad Sci, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China |
推荐引用方式 GB/T 7714 | Wei, Lin,Jin, Long,Luo, Xin. Noise-Suppressing Neural Dynamics for Time-Dependent Constrained Nonlinear Optimization With Applications[J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,2022:12. |
APA | Wei, Lin,Jin, Long,&Luo, Xin.(2022).Noise-Suppressing Neural Dynamics for Time-Dependent Constrained Nonlinear Optimization With Applications.IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,12. |
MLA | Wei, Lin,et al."Noise-Suppressing Neural Dynamics for Time-Dependent Constrained Nonlinear Optimization With Applications".IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS (2022):12. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。