Growing Echo State Network With an Inverse-Free Weight Update Strategy
文献类型:期刊论文
作者 | Chen, Xiufang1; Luo, Xin2![]() |
刊名 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
出版日期 | 2022-03-22 |
页码 | 12 |
关键词 | Reservoirs Training Computational modeling Neurons Topology Standards Numerical models Echo state network (ESN) inverse-free algorithm incremental scheme Schur complement Sherman-Morrison formula |
ISSN号 | 2168-2267 |
DOI | 10.1109/TCYB.2022.3155901 |
通讯作者 | Jin, Long(jinlongsysu@foxmail.com) ; Li, Shuai(lishuai@lzu.edu.cn) |
英文摘要 | An echo state network (ESN) draws widespread attention and is applied in many scenarios. As the most typical approach for solving the ESN, the matrix inverse operation of high computational complexity is involved. However, in the modern big data era, addressing the heavy computational burden problem is necessary. In order to reduce the computational load, an inverse-free ESN (IFESN) is proposed for the first time in this article. Besides, an incremental IFESN is constructed to attain the network topology with theoretical proof on the training error's monotone decline property. Simulations and experiments are conducted on several numerical and real-world time-series benchmarks, and corresponding results indicate that the proposed model is superior to some existing models and possesses excellent practical application potential. The source code is publicly available at https://github.com/LongJin-lab/the-supplementary-file-for-CYB-E-2021-04-0944. |
资助项目 | National Natural Science Foundation of China[62176109] ; Natural Science Foundation of Gansu Province[21JR7RA531] ; Team Project of Natural Science Foundation of Qinghai Province China[2020-ZJ-903] ; Gansu Provincial Youth Doctoral Fund of Colleges and Universities[2021QB-003] ; Fundamental Research Funds for the Central Universities[lzujbky-2021-65] ; Natural Science Foundation of Chongqing (China)[cstc2019jcyjjqX0013] ; Pioneer Hundred Talents Program of Chinese Academy of Sciences ; Supercomputing Center of Lanzhou University ; CAAI Huawei MindSpore Open Fund[CAAIXSJLJJ-2021035A] ; Special Projects of the Central Government in Guidance of Local Science and Technology Development[YDZX20216200001297] ; Science and Technology Project of Chengguan District of Lanzhou[2021JSCX0014] |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000777339900001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.138/handle/2HOD01W0/15503] ![]() |
专题 | 中国科学院重庆绿色智能技术研究院 |
通讯作者 | Jin, Long; Li, Shuai |
作者单位 | 1.Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China 2.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Xiufang,Luo, Xin,Jin, Long,et al. Growing Echo State Network With an Inverse-Free Weight Update Strategy[J]. IEEE TRANSACTIONS ON CYBERNETICS,2022:12. |
APA | Chen, Xiufang,Luo, Xin,Jin, Long,Li, Shuai,&Liu, Mei.(2022).Growing Echo State Network With an Inverse-Free Weight Update Strategy.IEEE TRANSACTIONS ON CYBERNETICS,12. |
MLA | Chen, Xiufang,et al."Growing Echo State Network With an Inverse-Free Weight Update Strategy".IEEE TRANSACTIONS ON CYBERNETICS (2022):12. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。