中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adjusted stochastic gradient descent for latent factor analysis

文献类型:期刊论文

作者Li, Qing1,2; Xiong, Diwen2; Shang, Mingsheng2
刊名INFORMATION SCIENCES
出版日期2022-04-01
卷号588页码:196-213
关键词Big data analysis High-dimensional and incomplete matrix Stochastic gradient descent Latent factor analysis Gradient adjustment Adaptive model Particle swarm optimization Local optima
ISSN号0020-0255
DOI10.1016/j.ins.2021.12.065
通讯作者Shang, Mingsheng(msshang@cigit.ac.cn)
英文摘要A high-dimensional and incomplete (HDI) matrix is a common form of big data in most industrial applications. Stochastic gradient descent (SGD) algorithm optimized latent factor analysis (LFA) model is often adopted in learning the abundant knowledge in HDI matrix. Despite its computational tractability and scalability, when solving a bilinear problem such as LFA, the regular SGD algorithm tends to be stuck in a local optimum. To address this issue, the paper innovatively proposes an Adjusted Stochastic Gradient Descent (ASGD) for Latent Factor Analysis, where the adjustment mechanism is implemented by considering the bi-polar gradient directions during optimization, such mechanism is theoretically proved for its efficiency in overstepping local saddle points and avoiding premature convergence. Also, the hyper-parameters of the model are implemented in a self-adaptive manner using the particle swarm optimization (PSO) algorithm, for higher practicality. Experimental results show that the proposed model outperforms other state-of-the-art approaches on six different HDI matrices from industrial applications, especially in prediction accuracy for missing data.(c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000768300300011
出版者ELSEVIER SCIENCE INC
源URL[http://119.78.100.138/handle/2HOD01W0/15627]  
专题中国科学院重庆绿色智能技术研究院
通讯作者Shang, Mingsheng
作者单位1.Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
2.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China
推荐引用方式
GB/T 7714
Li, Qing,Xiong, Diwen,Shang, Mingsheng. Adjusted stochastic gradient descent for latent factor analysis[J]. INFORMATION SCIENCES,2022,588:196-213.
APA Li, Qing,Xiong, Diwen,&Shang, Mingsheng.(2022).Adjusted stochastic gradient descent for latent factor analysis.INFORMATION SCIENCES,588,196-213.
MLA Li, Qing,et al."Adjusted stochastic gradient descent for latent factor analysis".INFORMATION SCIENCES 588(2022):196-213.

入库方式: OAI收割

来源:重庆绿色智能技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。