Quantitative combination load forecasting model based on forecasting error optimization
文献类型:期刊论文
作者 | Deng, Song1; Chen, Fulin2; Wu, Di3![]() |
刊名 | COMPUTERS & ELECTRICAL ENGINEERING
![]() |
出版日期 | 2022-07-01 |
卷号 | 101页码:11 |
关键词 | Gene expression programming Data noise reduction Load forecasting error Combination load forecasting |
ISSN号 | 0045-7906 |
DOI | 10.1016/j.compeleceng.2022.108125 |
通讯作者 | Wu, Di(wudi@cigit.ac.cn) |
英文摘要 | Accurate load forecasting is indispensable in various applications of the electric power industry. Although existing load forecasting methods perform well, they cannot handle complicated scenarios where load-related data are highly random and uncertain. To deal with this issue, A Quantitative Combination Load Forecasting model(QCLF) is proposed. Its main idea is to incorporate the load forecasting errors into the forecasting process as an optimization problem, which can significantly reduce the adverse impacts of random and uncertain load-related data. First, we propose an improved K-Means and Least Square-based Load Forecasting Error Model(LFEM-KLS) to improve the availability and effectiveness of load-related data. Second, we employ gene expression programming (GEP) to optimize the proposed LFEM-KLS to achieve highly accurate load forecasting. Experimental results on three load datasets demonstrate that a QCLF model significantly outperforms other related load forecasting models. |
资助项目 | National Natural Science Foundation of P. R. China[51977113] ; National Natural Science Foundation of P. R. China[62176070] ; National Natural Science Foundation of P. R. China[52077106] ; Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education[GDSC202003/TK220008] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000812902600008 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://119.78.100.138/handle/2HOD01W0/15952] ![]() |
专题 | 中国科学院重庆绿色智能技术研究院 |
通讯作者 | Wu, Di |
作者单位 | 1.Nanjing Univ Post & Telecommun, Inst Adv Technol, Nanjing 210003, Peoples R China 2.SouthEast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China 3.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China 4.Old Domin Univ, Norfolk, VA 23462 USA 5.Nanjing Univ Post & Telecommun, Collegetemp Automation & Artificial Intelligence, Nanjing 210003, Peoples R China 6.Anhui Polytech Univ, Key Lab Adv Percept & Intelligent Control High end, Minist Educ, Wuhu 241000, Peoples R China |
推荐引用方式 GB/T 7714 | Deng, Song,Chen, Fulin,Wu, Di,et al. Quantitative combination load forecasting model based on forecasting error optimization[J]. COMPUTERS & ELECTRICAL ENGINEERING,2022,101:11. |
APA | Deng, Song,Chen, Fulin,Wu, Di,He, Yi,Ge, Hui,&Ge, Yuan.(2022).Quantitative combination load forecasting model based on forecasting error optimization.COMPUTERS & ELECTRICAL ENGINEERING,101,11. |
MLA | Deng, Song,et al."Quantitative combination load forecasting model based on forecasting error optimization".COMPUTERS & ELECTRICAL ENGINEERING 101(2022):11. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。