中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
MCFL: multi-label contrastive focal loss for deep imbalanced pedestrian attribute recognition

文献类型:期刊论文

作者Chen, Lin1; Song, Jingkuan2; Zhang, Xuerui1; Shang, Mingsheng1
刊名NEURAL COMPUTING & APPLICATIONS
出版日期2022-06-04
页码15
关键词Pedestrian attribute recognition Multi-label contrastive loss Deep convolutional neural network Multi-label learning Imbalanced learning
ISSN号0941-0643
DOI10.1007/s00521-022-07300-7
通讯作者Shang, Mingsheng(msshang@cigit.ac.cn)
英文摘要Pedestrian Attribute Recognition (PAR) can provide valuable clues for several innovative surveillance applications. It is also a difficult task because inference of the multiple attributes at a far distance is challenging in real complex scenarios. Most existing methods improve the PAR with visual attention mechanisms or body-part detection modules, which increase the complexity of networks and require manual annotations of the human body. Also, uneven data distribution, leading to a decline in recall values, is still underestimated. This paper presents a novel multi-label optimization algorithm to mitigate these issues, named Multi-label Contrastive Focal Loss (MCFL). Specifically, we first propose a multi-label focal loss to emphasize the error-prone and minority attributes with a separated re-weighting scheme. And then, we introduce a multi-label contrastive learning strategy based on the multi-label divergences to help the deep network to distinguish the hard fine-grained attributes. We conduct extensive experiments on seven PAR benchmarks, and results indicate that the proposed MCFL with the native ResNet-50 backbone surpasses the state-of-the-art comparison methods in mean accuracy and recall.
资助项目National Nature Science Foundation of China[61902370] ; Chongqing Research Program of Technology Innovation and Application[cstc2019jscx-zdztzxX0019] ; Chongqing Municipal Eduction Commission[HZ2021008] ; Chongqing Municipal Eduction Commission[HZ2021017]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000805925400004
出版者SPRINGER LONDON LTD
源URL[http://119.78.100.138/handle/2HOD01W0/16311]  
专题中国科学院重庆绿色智能技术研究院
通讯作者Shang, Mingsheng
作者单位1.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
2.Univ Elect Sci & Technol China, Chengdu 611731, Sichuan, Peoples R China
推荐引用方式
GB/T 7714
Chen, Lin,Song, Jingkuan,Zhang, Xuerui,et al. MCFL: multi-label contrastive focal loss for deep imbalanced pedestrian attribute recognition[J]. NEURAL COMPUTING & APPLICATIONS,2022:15.
APA Chen, Lin,Song, Jingkuan,Zhang, Xuerui,&Shang, Mingsheng.(2022).MCFL: multi-label contrastive focal loss for deep imbalanced pedestrian attribute recognition.NEURAL COMPUTING & APPLICATIONS,15.
MLA Chen, Lin,et al."MCFL: multi-label contrastive focal loss for deep imbalanced pedestrian attribute recognition".NEURAL COMPUTING & APPLICATIONS (2022):15.

入库方式: OAI收割

来源:重庆绿色智能技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。