一种基于概率神经网络的城市用地高分辨率影像信息提取方法
文献类型:中文期刊论文
作者 | 程鹏2; 岳彩荣2; 江东2![]() ![]() |
发表日期 | 2016 |
关键词 | 概率神经网络 多尺度分割 高分辨率影像 城市用地 信息提取 精度评价 |
英文摘要 | 以国产高分辨率遥感影像为主要数据源,在建立城市用地类型体系的基础上,构建了一套结合面向对象的多尺度分割方法和概率神经网络模型优势的城市用地信息提取方法。对唐山市路南区实例验证表明,本研究提出的城市用地信息提取方法和分类结果能够有效地提取包括城市裸地、建筑用地、水体、绿地、道路等城市用地类型,总体分类精度达86%,kappa系数达0.78。 |
出处 | 林业调查规划
![]() |
期 | 02页:10-16 |
语种 | 中文 |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/41819] ![]() |
专题 | 资源利用与环境修复重点实验室_中文论文 |
作者单位 | 1.中国科学院地理科学与资源研究所 2.西南林业大学林学院 |
推荐引用方式 GB/T 7714 | 程鹏,岳彩荣,江东,等. 一种基于概率神经网络的城市用地高分辨率影像信息提取方法. 2016. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。