中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Assessment of debris flow hazards using a Bayesian Network

文献类型:SCI/SSCI论文

作者Liang W. J.; Zhuang D. F.; Jiang D.; Pan J. J.; Ren H. Y.
发表日期2012
关键词Debris Flow Hazard Bayesian Network Hazard Assessment Chinese Mainland Shallow Landslide Susceptibility Artificial Neural-networks Hong-kong Natural Slopes Lantau Island Water-quality Gis Prediction Mountains Inventory
英文摘要Comprehensive assessment of debris flow hazard risk is challenging due to the complexity and uncertainties of various related factors. A reasonable and reliable assessment should be based on sufficient data and realistic approaches. This study presents a novel appeoach for assessing debris flow hazard risk using BN (Bayesian Network) and domain knowledge. Based on the records of debris flow hazards and geomorphological/environmental data for the Chinese mainland, approaches based on BN, SVM (Support Vector Machine) and ANN (Artificial Neural Network) were compared. BN provided the highest values of hazard detection probability, precision, and AUC (area under the receiver operating characteristic curve). The BN model is useful for mapping and assessing debris flow hazard risk on a national scale. (C) 2012 Elsevier B.V. All rights reserved.
出处Geomorphology
171
94-100
语种英语
ISSN号0169-555X
源URL[http://192.168.22.105/handle/311030/30824]  
专题资源利用与环境修复重点实验室_外文论文
中国科学院地理科学与资源研究所
推荐引用方式
GB/T 7714
Liang W. J.,Zhuang D. F.,Jiang D.,et al. Assessment of debris flow hazards using a Bayesian Network. 2012.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。