基于深度学习的无碰撞N体数值模拟的可行性验证方法
文献类型:专利
作者 | 龙潜![]() ![]() ![]() ![]() ![]() ![]() |
发表日期 | 2022-08-30 |
专利号 | ZL202210617712.2 |
著作权人 | 中国科学院云南天文台 |
国家 | 中国 |
文献子类 | 发明 |
产权排序 | 1 |
英文摘要 | 本发明公开基于深度学习的无碰撞N体数值模拟的可行性验证方法,包括步骤一、神经网络模型计算时间线芯复杂度函数的验证,步骤二、利用二分法处理生成的图像,步骤三、建立深度神经网络并进行训练,步骤四、通过神经网络模型得出预测图并比较得出精度,步骤五、数据测试统计准确度并验证普适性,步骤六、等时势问题测试并将计算时间比较得出可行性;本发明提出并验证了深度神经网络模型具有快速求解Poisson方程中势能的能力,精度和速度优于快速傅里叶变换法和有限差分法,特别是随着无碰撞引力N体数值模拟的粒子数规模增加,深度神经网络模型的速度优势更加明显,在未经训练的更大网格化尺寸数据上也能使用,具有可扩展性。 |
学科主题 | 计算机科学技术 ; 人工智能 ; 计算机神经网络 |
公开日期 | 2022-08-30 |
申请日期 | 2022-06-01 |
语种 | 中文 |
状态 | 公开 |
源URL | [http://ir.ynao.ac.cn/handle/114a53/25548] ![]() |
专题 | 云南天文台_丽江天文观测站(南方基地) 云南天文台_信息中心 |
作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | 龙潜,赵梓成,董小波,等. 基于深度学习的无碰撞N体数值模拟的可行性验证方法. ZL202210617712.2. 2022-08-30. |
入库方式: OAI收割
来源:云南天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。