中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Retrieving K-Band Instantaneous Microwave Land Surface Emissivity Based on Passive Microwave Brightness Temperature and Atmospheric Precipitable Water Vapor Data

文献类型:期刊论文

作者Zhou, Fang-Cheng2,3; Li, Zhao-Liang4; Wu, Hua1,2,3; Tang, Bo-Hui2,3; Tang, Ronglin2,3; Song, Xiaoning3; Yan, Guangjian5
刊名IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
出版日期2017-12-01
卷号10期号:12页码:5608-5617
关键词Brightness temperature land surface emissivity precipitable water vapor (PWV)
ISSN号1939-1404
DOI10.1109/JSTARS.2017.2763167
通讯作者Wu, Hua(wuhua@igsnrr.ac.cn)
英文摘要An algorithm has been developed for retrieving instantaneous K-band microwave land surface emissivity using only brightness temperature and atmospheric precipitable water vapor content (PWV) data. The radiative transfer model is simplified to a new microwave emissivity retrieval model using two assumptions: 1) emissivities at 18.7 and 23.8 GHz with horizontal polarization are approximately equal, and 2) simple parameterizations exist between atmospheric transmittance and PWV and between atmospheric effective radiating temperature and PWV. The new technique does not need infrared land surface temperature as the input data, and it overcomes the limitation of previous algorithms under cloudy conditions. The estimated instantaneous emissivities are validated at single points and in the regional area. The results demonstrate that this simplified algorithm has the best root mean square error of 0.017, a bias of 0.004 in the single-point validation, and an R-2 of 0.66 and a RMSE of 0.021 in the regional validation. This simplified algorithm has the potential to obtain instantaneous microwave land surface emissivity under both cloud-free and cloudy conditions.
WOS关键词SATELLITE DATA ASSIMILATION ; SOIL-MOISTURE ; AMSR-E ; RADIOMETRIC OBSERVATIONS ; PRINCIPAL COMPONENTS ; RADIATIVE-TRANSFER ; DATA RECORDS ; SEA-ICE ; PART I ; WEATHER
资助项目National Natural Science Foundation of China[41331171] ; National Natural Science Foundation of China[41401394] ; National Natural Science Foundation of China[41471297] ; National Natural Science Foundation of China[41231170] ; Innovation Project of LREIS[O88RA801YA]
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000418871200024
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; Innovation Project of LREIS
源URL[http://ir.igsnrr.ac.cn/handle/311030/60789]  
专题中国科学院地理科学与资源研究所
通讯作者Wu, Hua
作者单位1.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Chinese Acad Agr Sci, Minist Agr, Key Lab Agriinformat, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
5.Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Fang-Cheng,Li, Zhao-Liang,Wu, Hua,et al. Retrieving K-Band Instantaneous Microwave Land Surface Emissivity Based on Passive Microwave Brightness Temperature and Atmospheric Precipitable Water Vapor Data[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2017,10(12):5608-5617.
APA Zhou, Fang-Cheng.,Li, Zhao-Liang.,Wu, Hua.,Tang, Bo-Hui.,Tang, Ronglin.,...&Yan, Guangjian.(2017).Retrieving K-Band Instantaneous Microwave Land Surface Emissivity Based on Passive Microwave Brightness Temperature and Atmospheric Precipitable Water Vapor Data.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,10(12),5608-5617.
MLA Zhou, Fang-Cheng,et al."Retrieving K-Band Instantaneous Microwave Land Surface Emissivity Based on Passive Microwave Brightness Temperature and Atmospheric Precipitable Water Vapor Data".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 10.12(2017):5608-5617.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。