AHDet: A dynamic coarse-to-fine gaze strategy for active object detection
文献类型:期刊论文
作者 | Xu, Nuo1,2![]() ![]() ![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2022-06-28 |
卷号 | 491页码:522-532 |
关键词 | Object detection Active object detection Deep reinforcement learning Convolutional neural networks |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2021.12.030 |
通讯作者 | Huo, Chunlei(clhuo@nlpr.ia.ac.cn) |
英文摘要 | In the work setting of deep learning, most of the neural networks employed for visual object detection in recent years are based on bounding box regression. The performance of active detectors through multistep decision-making is limited by the rough model design. However, from the perspective of cognitive science, the recognition in the human visual system is a decision process from coarse to fine. Based on the theory of ``see the forest first, then the trees", this paper proposes a dynamic coarse-to-fine gaze strategy for active object detection, named AHDet, which takes the key points as the realization carrier of the coarse-to-fine concept. The detection process is divided into two steps, AIM and HIT. In the step of AIM, the positioning and prior bounding boxes for objects are given by detecting the center points, referring to the first glance. In the step of HIT, bounding boxes are dynamically adjusted to obtain compact bounding boxes with the help of the corner points, referring to the careful observation. With the design of the two-step coarse-to-fine gaze process, AHDet outperforms traditional approaches. A series of experiments performed on MS-COCO and PASCAL VOC dataset demonstrate the advantages of AHDet. (C) 2021 Elsevier B.V. All rights reserved. |
资助项目 | National Key Research and Development Program of China[2018AAA0100400] ; National Natural Science Foundation of China[62071466] ; National Natural Science Foundation of China[91438105] ; National Natural Science Foundation of China[62076242] ; National Natural Science Foundation of China[61976208] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000830181200010 |
出版者 | ELSEVIER |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/49839] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 |
通讯作者 | Huo, Chunlei |
作者单位 | 1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Nuo,Huo, Chunlei,Zhang, Xin,et al. AHDet: A dynamic coarse-to-fine gaze strategy for active object detection[J]. NEUROCOMPUTING,2022,491:522-532. |
APA | Xu, Nuo,Huo, Chunlei,Zhang, Xin,&Pan, Chunhong.(2022).AHDet: A dynamic coarse-to-fine gaze strategy for active object detection.NEUROCOMPUTING,491,522-532. |
MLA | Xu, Nuo,et al."AHDet: A dynamic coarse-to-fine gaze strategy for active object detection".NEUROCOMPUTING 491(2022):522-532. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。