中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Monte Carlo-based reinforcement learning control for unmanned aerial vehicle systems

文献类型:期刊论文

作者Wei, Qinglai2,3,4; Yang, Zesheng3,4; Su, Huaizhong1; Wang, Lijian1
刊名NEUROCOMPUTING
出版日期2022-10-01
卷号507页码:282-291
关键词Reinforcement learning Adaptive dynamic programming (ADP) UAV control Monte Carlo simulation Neural networks
ISSN号0925-2312
DOI10.1016/j.neucom.2022.08.011
通讯作者Wei, Qinglai(qinglai.wei@ia.ac.cn)
英文摘要In this paper, a new data-driven reinforcement learning method based on Monte Carlo simulation is developed to solve the optimal control problem of unmanned aerial vehicle (UAV) systems. Based on the data which are generated by Monte Carlo simulation, neural network (NN) is used to construct the dynamics of the UAV system with unknown disturbances, where the mathematical model of the UAV sys-tem is unnecessary. An effective iterative framework of action and critic is constructed to obtain the opti-mal control law. The convergence property is developed to guarantee that the iterative performance cost function converges to a finite neighborhood of the optimal performance cost function. Finally, numerical results are given to illustrate the effectiveness of the developed method.(c) 2022 Published by Elsevier B.V.
WOS关键词LINEAR MULTIAGENT SYSTEMS ; NEURAL-NETWORK ; NONLINEAR-SYSTEMS ; QUADROTOR ; UAV ; CONSENSUS ; DYNAMICS ; TRACKING ; DESIGN ; GAMES
资助项目National Key R&D Pro- gram of China[2021YFE0206100] ; National Key R&D Pro- gram of China[2018YFB1702300] ; National Natural Science Founda- tion of China[62073321] ; National Defense Basic Scientific Research Program[JCKY2019203C029] ; Science and Technology Development Fund, Macau SAR[0015/2020/AMJ]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000843489800008
出版者ELSEVIER
资助机构National Key R&D Pro- gram of China ; National Natural Science Founda- tion of China ; National Defense Basic Scientific Research Program ; Science and Technology Development Fund, Macau SAR
源URL[http://ir.ia.ac.cn/handle/173211/49882]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_智能化团队
通讯作者Wei, Qinglai
作者单位1.Beijing Aeronaut Technol Res Inst COMAC, Beijing 102211, Peoples R China
2.Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wei, Qinglai,Yang, Zesheng,Su, Huaizhong,et al. Monte Carlo-based reinforcement learning control for unmanned aerial vehicle systems[J]. NEUROCOMPUTING,2022,507:282-291.
APA Wei, Qinglai,Yang, Zesheng,Su, Huaizhong,&Wang, Lijian.(2022).Monte Carlo-based reinforcement learning control for unmanned aerial vehicle systems.NEUROCOMPUTING,507,282-291.
MLA Wei, Qinglai,et al."Monte Carlo-based reinforcement learning control for unmanned aerial vehicle systems".NEUROCOMPUTING 507(2022):282-291.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。