中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Navigating Diverse Salient Features for Vehicle Re-Identification

文献类型:期刊论文

作者Qian, Wen2,3; He, Zhiqun1; Chen, Chen2,3; Peng, Silong2,3
刊名IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
出版日期2022-07-22
页码10
关键词Navigation Task analysis Image color analysis Boosting Feature extraction Benchmark testing Space vehicles Vehicle re-identification suppress-and-explore mode grid-based salient navigation cross-space constraints
ISSN号1524-9050
DOI10.1109/TITS.2022.3190959
通讯作者Chen, Chen(chen.chen@ia.ac.cn)
英文摘要Mining sufficient discriminative information is vital for effective feature representation in vehicle re-identification. Traditional methods mainly focus on the most salient features and neglect whether the explored information is sufficient. This paper tackles the above limitation by proposing a novel Salience-Navigated Vehicle Re-identification Network (SVRN) which explores diverse salient features at multi-scales. For mining sufficient salient features, we design SVRN from two aspects: 1) network architecture: we propose a novel salience-navigated vehicle re-identification network, which mines diverse features under a cascaded suppress-and-explore mode. 2) feature space: cross-space constraint enables the diversity from feature space, which restrains the cross-space features by vehicle and image identifications (IDs). Extensive experiments demonstrate our method's effectiveness, and the overall results surpass all previous state-of-the-arts in three widely-used Vehicle ReID benchmarks (VeRi-776, VehicleID, and VERI-WILD), i.e., we achieve an 84.5% mAP on VeRi-776 benchmark that outperforms the second-best method by a large margin (3.5% mAP).
资助项目National Science Foundation of China[NSFC 61906194] ; National Key Research and Development Program of China[2021YFF0602101]
WOS研究方向Engineering ; Transportation
语种英语
WOS记录号WOS:000833053100001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Science Foundation of China ; National Key Research and Development Program of China
源URL[http://ir.ia.ac.cn/handle/173211/49770]  
专题自动化研究所_智能制造技术与系统研究中心_多维数据分析团队
通讯作者Chen, Chen
作者单位1.Sensetime, Shenzhen 518000, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Huairou 101408, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Qian, Wen,He, Zhiqun,Chen, Chen,et al. Navigating Diverse Salient Features for Vehicle Re-Identification[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2022:10.
APA Qian, Wen,He, Zhiqun,Chen, Chen,&Peng, Silong.(2022).Navigating Diverse Salient Features for Vehicle Re-Identification.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,10.
MLA Qian, Wen,et al."Navigating Diverse Salient Features for Vehicle Re-Identification".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2022):10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。