中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks

文献类型:期刊论文

作者Yao, Xin2; Gao, Yong2; Zhu, Di2; Manley, Ed3; Wang, Jiaoe1,4; Liu, Yu2
刊名IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
出版日期2021-12-01
卷号22期号:12页码:7474-7484
关键词Spatial databases Gravity Convolution Biological system modeling Data models Predictive models Neural networks Origin-destination flow data imputation spatial interaction network graph embedding graph convolution
ISSN号1524-9050
DOI10.1109/TITS.2020.3003310
通讯作者Gao, Yong(gaoyong@pku.edu.cn)
英文摘要Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data imputation provides great support for the acquisition of complete flow data, which enables us to better understand regional connections and mobility patterns. However, existing models or approaches neglect the network structure of spatial flows, thus resulting in inappropriate estimates and a low performance. The development of graph neural networks offers a powerful tool to deal with graph-structured data. In this article, we proposed a spatial interaction graph convolutional network model, which combines graph convolution and a mapping function to predict flow data from the perspective of network learning. This model utilizes geographical unit embedding in local spatial networks to improve prediction accuracy. A negative sampling technique is adopted to reduce misestimation. Experiments on Beijing taxi trip data verified the usefulness of our model in spatial flow prediction. We also demonstrated that a biased training sample had a negative impact on the model's performance. More attributes of geographical units, a more proper negative sampling rate and a larger training set can increase the prediction accuracy of flow data.
WOS关键词INTERACTION PATTERNS ; NEURAL-NETWORKS ; MOBILITY ; MATRICES ; MODELS ; CHINA ; URBAN ; COMMUNITIES ; INFERENCE
资助项目National Natural Science Foundation of China[41971331] ; National Natural Science Foundation of China[41830645] ; National Natural Science Foundation of China[41625003] ; National Natural Science Foundation of China[41771425] ; National Key Research and Development Program of China[2017YFB0503602] ; Smart Guangzhou Spatio-Temporal Information Cloud Platform Construction[GZIT2016-A5-147]
WOS研究方向Engineering ; Transportation
语种英语
WOS记录号WOS:000722718400016
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; National Key Research and Development Program of China ; Smart Guangzhou Spatio-Temporal Information Cloud Platform Construction
源URL[http://ir.igsnrr.ac.cn/handle/311030/168099]  
专题中国科学院地理科学与资源研究所
通讯作者Gao, Yong
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
2.Peking Univ, Sch Earth & Space Sci, Inst Remote Sensing & Geog Informat Syst, Beijing 100871, Peoples R China
3.Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England
4.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Yao, Xin,Gao, Yong,Zhu, Di,et al. Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2021,22(12):7474-7484.
APA Yao, Xin,Gao, Yong,Zhu, Di,Manley, Ed,Wang, Jiaoe,&Liu, Yu.(2021).Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,22(12),7474-7484.
MLA Yao, Xin,et al."Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 22.12(2021):7474-7484.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。