中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Fast and Slow Changes Constrained Spatio-Temporal Subpixel Mapping

文献类型:期刊论文

作者Zhang, Chengyuan1; Wang, Qunming1; Lu, Ping1; Ge, Yong2; Atkinson, Peter M.3,4,5
刊名IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
出版日期2022
卷号60页码:16
关键词Spatial resolution Neurons Monitoring Image resolution Uncertainty Remote sensing Satellites Downscaling Hopfield neural network (HNN) land cover and land use (LCLU) spatio-temporal dependence subpixel mapping (SPM) super-resolution mapping
ISSN号0196-2892
DOI10.1109/TGRS.2021.3133534
通讯作者Wang, Qunming(wqm11111@126.com)
英文摘要Subpixel mapping (SPM) is a technique to tackle the mixed-pixel problem and produces land cover and land use (LCLU) maps at a finer spatial resolution than the original coarse data. However, uncertainty exists unavoidably in SPM, which is an ill-posed downscaling problem. Spatio-temporal SPM methods have been proposed to deal with this uncertainty, but current methods fail to explore fully the information in the time-series images, especially more rapid changes over a short-time interval. In this article, a fast and slow changes constrained spatio-temporal subpixel mapping (FSSTSPM) method is proposed to account for fast LCLU changes over a short time interval and slow changes over a long time interval. Both fast and slow changes-based temporal constraints are proposed and incorporated simultaneously into the FSSTSPM to increase the accuracy of SPM. The proposed FSSTSPM method was validated using two synthetic datasets with various proportion errors. It was also applied to oil-spill mapping using a real PlanetScope-Sentinel-2 dataset and Amazon deforestation mapping using a real Landsat-Moderate Resolution Imaging Spectroradiometer (MODIS) dataset. The results demonstrate the superiority of FSSTSPM. Moreover, the advantage of FSSTSPM is more obvious with an increase in proportion errors. The concepts of the fast and slow changes, together with the derived temporal constraints, provide a new insight to enhance SPM by taking fuller advantage of the temporal information in the available time-series images.
WOS关键词REMOTELY-SENSED IMAGES ; LAND-COVER ; SCALE ; CLASSIFICATION ; PLANETSCOPE ; ALGORITHM ; ACCURACY
资助项目National Natural Science Foundation of China[41971297] ; National Natural Science Foundation of China[42171345] ; Tongji University[02502350047]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000766298800014
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; Tongji University
源URL[http://ir.igsnrr.ac.cn/handle/311030/171666]  
专题中国科学院地理科学与资源研究所
通讯作者Wang, Qunming
作者单位1.Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
3.Univ Lancaster, Fac Sci & Technol, Lancaster LA1 4YR, England
4.Univ Southampton, Geog & Environm, Southampton SO17 1BJ, Hants, England
5.Chinese Acad Sci, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Chengyuan,Wang, Qunming,Lu, Ping,et al. Fast and Slow Changes Constrained Spatio-Temporal Subpixel Mapping[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60:16.
APA Zhang, Chengyuan,Wang, Qunming,Lu, Ping,Ge, Yong,&Atkinson, Peter M..(2022).Fast and Slow Changes Constrained Spatio-Temporal Subpixel Mapping.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60,16.
MLA Zhang, Chengyuan,et al."Fast and Slow Changes Constrained Spatio-Temporal Subpixel Mapping".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022):16.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。