中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Change Trend and Restoration Potential of Vegetation Net Primary Productivity in China over the Past 20 Years

文献类型:期刊论文

作者Liu, Guobo1,2; Shao, Quanqin1,2; Fan, Jiangwen1; Ning, Jia1; Rong, Kai3; Huang, Haibo1; Liu, Shuchao1,2; Zhang, Xiongyi1,2; Niu, Linan1,2; Liu, Jiyuan1
刊名REMOTE SENSING
出版日期2022-04-01
卷号14期号:7页码:26
关键词China's vegetation ecosystem net primary productivity climax background restoration potential
DOI10.3390/rs14071634
通讯作者Shao, Quanqin(shaoqq@igsnrr.ac.cn)
英文摘要As an important vegetation parameter and ecological index, vegetation net primary productivity (NPP) can intuitively reflect changes in the ecological environment and the level of the carbon budget. However, the change trend of NPP and its recovery potential in China over the past 20 years remain unclear. Here, we used trend analysis, multiple regression analysis and residual analysis methods to analyse the change trend in the NPP of China's terrestrial ecosystems from 2000 to 2019, as well as the climax background, restoration status and restoration potential of the NPP of forest, grassland and desert ecosystems. The results showed that (1) the change in vegetation NPP in China from 2000 to 2019 showed a continuous upward trend, with a change slope of 2.39 gC/m(2)/a(2), and the area with a positive slope of change accounted for 68.10% of the country's land area. The contribution rates of meteorological conditions and human activities to vegetation NPP changes were 85.41% and 14.59%, respectively. (2) The results obtained by the regression analysis method of meteorological conditions based on nature reserves could reflect the zonal climax vegetation status to a large extent, and the obtained values had a smooth transition within each ecogeographical division and between each ecogeographical division, which truly reflected the law of gradual change in climate, vegetation and natural conditions. The annual total NPP of the climax background vegetation in China's forest, grassland and desert ecosystems was approximately 2.76 +/- 0.28 PgC, and the annual total NPP of the three ecosystems was 1.90 +/- 0.2 PgC, 0.80 +/- 0.07 PgC and 0.009 +/- 0.0005 PgC, respectively. (3) The annual total vegetation NPP of the restoration status of China's forest, grassland and desert ecosystems was 2.24 PgC, and the annual total vegetation NPP of the three was 1.54 PgC, 0.65 PgC and 0.007 PgC, respectively. Benefiting from the effective implementation of climate warming and humidification and ecological engineering, the agro-pastoral zone, the Loess Plateau, the eastern Sichuan Basin and the Greater Khingan Range had the most significant increases in the past 20 years. (4) The annual total vegetation NPP of China's forest, grassland and desert ecosystem restoration potential was approximately 0.52 +/- 0.28 PgC, which accounted for approximately 19.05% of the annual total NPP of the climax background vegetation. The annual total vegetation NPP of forest, grassland and desert ecosystems restoration status was 0.36 +/- 0.2 PgC, 0.16 +/- 0.07 PgC and 0.002 +/- 0.0005 PgC, respectively; the restoration potential accounted for 18.80%, 9.67% and 23.95% of the climax background vegetation NPP, respectively. The deployment of ecological projects should fully consider the restrictive climate conditions for decision makers and ecological scholars, and the benefits and costs of the projects should be considered comprehensively.
WOS关键词GROSS PRIMARY PRODUCTION ; CLIMATE-CHANGE ; TERRESTRIAL ECOSYSTEM ; MANN-KENDALL ; DRIVEN ; VARIABILITY ; RADIATION ; SERVICES ; PLATEAU
资助项目CAS Strategic Leading Science and Technology Project Category A[XDA23100203] ; National Key Research and Development Program of China[2017YFC0506501]
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
出版者MDPI
WOS记录号WOS:000780604900001
资助机构CAS Strategic Leading Science and Technology Project Category A ; National Key Research and Development Program of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/174033]  
专题中国科学院地理科学与资源研究所
通讯作者Shao, Quanqin
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Shanghai Kaiqing Intelligent Technol Co Ltd, Shanghai 201101, Peoples R China
推荐引用方式
GB/T 7714
Liu, Guobo,Shao, Quanqin,Fan, Jiangwen,et al. Change Trend and Restoration Potential of Vegetation Net Primary Productivity in China over the Past 20 Years[J]. REMOTE SENSING,2022,14(7):26.
APA Liu, Guobo.,Shao, Quanqin.,Fan, Jiangwen.,Ning, Jia.,Rong, Kai.,...&Liu, Jiyuan.(2022).Change Trend and Restoration Potential of Vegetation Net Primary Productivity in China over the Past 20 Years.REMOTE SENSING,14(7),26.
MLA Liu, Guobo,et al."Change Trend and Restoration Potential of Vegetation Net Primary Productivity in China over the Past 20 Years".REMOTE SENSING 14.7(2022):26.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。