中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Accurately mapping global wheat production system using deep learning algorithms

文献类型:期刊论文

作者Luo, Yuchuan1,2; Zhang, Zhao1,2; Cao, Juan1,2; Zhang, Liangliang1,2; Zhang, Jing1,2; Han, Jichong1,2; Zhuang, Huimin1,2; Cheng, Fei1,2; Tao, Fulu3,4,5
刊名INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION
出版日期2022-06-01
卷号110页码:10
关键词Wheat Crop mapping Yield estimation Deep learning Remote sensing
ISSN号1569-8432
DOI10.1016/j.jag.2022.102823
通讯作者Zhang, Zhao(zhangzhao@bnu.edu.cn)
英文摘要Assessing global food security and developing sustainable production systems need spatially explicit information on crop harvesting areas and yields; however the available datasets are spatially and temporally coarse. Here, we developed a general framework, Global Wheat Production Mapping System (GWPMS), to map the spatial distribution of wheat harvesting area and estimate yield using data-driven models across eight major wheat producing countries worldwide. We found GWPMS could not only generate robust wheat maps with R-2 consistently greater than 0.8, but also successfully captured a substantial fraction of yield variations with an average of 76%. The developed long short-term memory model outperformed other machine learning algorithms because it characterized the nonlinear and cumulative impacts of meteorological factors on yield. Using the derived wheat maps improved R-2 by 6.7% compared to a popularly used dataset. GWPMS is able to map spatial distribution of harvesting areas in a scalable way and further estimate gridded-yield robustly, and it can be applied globally using publicly available data. GWPMS and the resultant datasets will greatly accelerate our understanding and studies on global food security.
WOS关键词YIELD PREDICTION ; SATELLITE ; MODEL ; CORN ; MAPS
资助项目National Natural Science Foundation of China[42061144003] ; National Natural Science Foundation of China[41977405]
WOS研究方向Remote Sensing
语种英语
WOS记录号WOS:000805028900003
出版者ELSEVIER
资助机构National Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/177885]  
专题中国科学院地理科学与资源研究所
通讯作者Zhang, Zhao
作者单位1.Beijing Normal Univ, Sch Natl Safety & Emergency Management, Minist Educ, Beijing 100875, Peoples R China
2.Beijing Normal Univ, Acad Disaster Reduct & Emergency Management, Sch Natl Safety & Emergency Management, Minsitry Emergency Management, Beijing 100875, Peoples R China
3.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China
5.Natl Resources Inst Finland Luke, FI-00790 Helsinki, Finland
推荐引用方式
GB/T 7714
Luo, Yuchuan,Zhang, Zhao,Cao, Juan,et al. Accurately mapping global wheat production system using deep learning algorithms[J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,2022,110:10.
APA Luo, Yuchuan.,Zhang, Zhao.,Cao, Juan.,Zhang, Liangliang.,Zhang, Jing.,...&Tao, Fulu.(2022).Accurately mapping global wheat production system using deep learning algorithms.INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,110,10.
MLA Luo, Yuchuan,et al."Accurately mapping global wheat production system using deep learning algorithms".INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 110(2022):10.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。