A Superpixel Spatial Intuitionistic Fuzzy C-Means Clustering Algorithm for Unsupervised Classification of High Spatial Resolution Remote Sensing Images
文献类型:期刊论文
作者 | Ji, Xinran1; Huang, Liang1,2; Tang, Bo-Hui1,3; Chen, Guokun1; Cheng, Feifei1 |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2022-07-01 |
卷号 | 14期号:14页码:22 |
关键词 | intuitionistic fuzzy C-means clustering superpixel classification high spatial resolution remote sensing image |
DOI | 10.3390/rs14143490 |
通讯作者 | Huang, Liang(kmhuangliang@kust.edu.cn) |
英文摘要 | This paper proposes a superpixel spatial intuitionistic fuzzy C-means (SSIFCM) clustering algorithm to address the problems of misclassification, salt and pepper noise, and classification uncertainty arising in the pixel-level unsupervised classification of high spatial resolution remote sensing (HSRRS) images. To reduce information redundancy and ensure noise immunity and image detail preservation, we first use a superpixel segmentation to obtain the local spatial information of the HSRRS image. Secondly, based on the bias-corrected fuzzy C-means (BCFCM) clustering algorithm, the superpixel spatial intuitionistic fuzzy membership matrix is constructed by counting an intuitionistic fuzzy set and spatial function. Finally, to minimize the classification uncertainty, the local relation between adjacent superpixels is used to obtain the classification results according to the spectral features of superpixels. Four HSRRS images of different scenes in the aerial image dataset (AID) are selected to analyze the classification performance, and fifteen main existing unsupervised classification algorithms are used to make inter-comparisons with the proposed SSIFCM algorithm. The results show that the overall accuracy and Kappa coefficients obtained by the proposed SSIFCM algorithm are the best within the inter-comparison of fifteen algorithms, which indicates that the SSIFCM algorithm can effectively improve the classification accuracy of HSRRS image. |
WOS关键词 | SCENE CLASSIFICATION ; SEGMENTATION |
资助项目 | National Natural Science Foundation of China[41961039] ; Yunnan Fundamental Research Projects[202201AT070164] ; Yunnan Fundamental Research Projects[202101AT070102] |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000833299500001 |
出版者 | MDPI |
资助机构 | National Natural Science Foundation of China ; Yunnan Fundamental Research Projects |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/181162] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Huang, Liang |
作者单位 | 1.Kunming Univ Sci & Technol, Fac Land Resource Engn, Kunming 650093, Yunnan, Peoples R China 2.Surveying & Mapping Geoinformat Technol Res Ctr P, Kunming 650093, Yunnan, Peoples R China 3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 | Ji, Xinran,Huang, Liang,Tang, Bo-Hui,et al. A Superpixel Spatial Intuitionistic Fuzzy C-Means Clustering Algorithm for Unsupervised Classification of High Spatial Resolution Remote Sensing Images[J]. REMOTE SENSING,2022,14(14):22. |
APA | Ji, Xinran,Huang, Liang,Tang, Bo-Hui,Chen, Guokun,&Cheng, Feifei.(2022).A Superpixel Spatial Intuitionistic Fuzzy C-Means Clustering Algorithm for Unsupervised Classification of High Spatial Resolution Remote Sensing Images.REMOTE SENSING,14(14),22. |
MLA | Ji, Xinran,et al."A Superpixel Spatial Intuitionistic Fuzzy C-Means Clustering Algorithm for Unsupervised Classification of High Spatial Resolution Remote Sensing Images".REMOTE SENSING 14.14(2022):22. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。