中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Intelligent Grazing UAV Based on Airborne Depth Reasoning

文献类型:期刊论文

作者Luo, Wei1,2,3,4; Zhang, Ze1; Fu, Ping5; Wei, Guosheng1; Wang, Dongliang2; Li, Xuqing1,3,4; Shao, Quanqin2,6; He, Yuejun1,3,4; Wang, Huijuan1; Zhao, Zihui1,3,4
刊名REMOTE SENSING
出版日期2022-09-01
卷号14期号:17页码:17
关键词precision grazing intelligent UAV cattle monitoring YOLOv5 Inception V3 LSTM
DOI10.3390/rs14174188
通讯作者Wang, Dongliang(wangdongliang@igsnrr.ac.cn)
英文摘要The existing precision grazing technology helps to improve the utilization rate of livestock to pasture, but it is still at the level of "collectivization" and cannot provide more accurate grazing management and control. (1) Background: In recent years, with the rapid development of agent-related technologies such as deep learning, visual navigation and tracking, more and more lightweight edge computing cell target detection algorithms have been proposed. (2) Methods: In this study, the improved YOLOv5 detector combined with the extended dataset realized the accurate identification and location of domestic cattle; with the help of the kernel correlation filter (KCF) automatic tracking framework, the long-term cyclic convolution network (LRCN) was used to analyze the texture characteristics of animal fur and effectively distinguish the individual cattle. (3) Results: The intelligent UAV equipped with an AGX Xavier high-performance computing unit ran the above algorithm through edge computing and effectively realized the individual identification and positioning of cattle during the actual flight. (4) Conclusion: The UAV platform based on airborne depth reasoning is expected to help the development of smart ecological animal husbandry and provide better precision services for herdsmen.
WOS关键词ANIMAL IDENTIFICATION ; FACE RECOGNITION ; EAR TAGS ; BEHAVIOR ; TRACKING ; SYSTEM
资助项目Chengdu, China
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000851860200001
出版者MDPI
资助机构Chengdu, China
源URL[http://ir.igsnrr.ac.cn/handle/311030/182793]  
专题中国科学院地理科学与资源研究所
通讯作者Wang, Dongliang
作者单位1.North China Inst Aerosp Engn, Langfang 065000, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China
3.Aerosp Remote Sensing Informat Proc & Applicat Co, Langfang 065000, Peoples R China
4.Natl Joint Engn Res Ctr Space Remote Sensing Info, Langfang 065000, Peoples R China
5.Minjiang Univ, Fujian Prov Educ Dept, Key Lab Adv Mot Control, Fuzhou 350108, Peoples R China
6.Univ Chinese Acad Sci, Beijing 101407, Peoples R China
推荐引用方式
GB/T 7714
Luo, Wei,Zhang, Ze,Fu, Ping,et al. Intelligent Grazing UAV Based on Airborne Depth Reasoning[J]. REMOTE SENSING,2022,14(17):17.
APA Luo, Wei.,Zhang, Ze.,Fu, Ping.,Wei, Guosheng.,Wang, Dongliang.,...&Liu, Xueli.(2022).Intelligent Grazing UAV Based on Airborne Depth Reasoning.REMOTE SENSING,14(17),17.
MLA Luo, Wei,et al."Intelligent Grazing UAV Based on Airborne Depth Reasoning".REMOTE SENSING 14.17(2022):17.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。