Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment
文献类型:期刊论文
作者 | Wang WB(王文博); Wang Z(王臻); Su L(苏林); Hu T(胡涛); Ren QY(任群言); Peter Gerstoft2; Ma L(马力) |
刊名 | The Journal of the Acoustical Society of America
![]() |
出版日期 | 2020 |
期号 | 未知页码:3633 |
DOI | 10.1121/10.0002911 |
英文摘要 | Multiple approaches for depth estimation in deep-ocean environments are discussed. First, a multispectral transformation for depth estimation (MSTDE) method based on the low-spatial-frequency interference in a constant sound speed is derived to estimate the source depth directly. To overcome the limitation of real sound-speed profiles and source bandwidths on the accuracy of MSTDE, a method based on a convolution neural network (CNN) and conventional beamforming (CBF) preprocessing is proposed. Further, transfer learning is adapted to tackle the effect of noise on the estimation result. At-sea data are used to test the performance of these methods, and results suggest that (1) the MSTDE can estimate the depth; however, the error increases with distance; (2) MSTDE error can be moderately compensated through a calculated factor; (3) the performance of deep-learning approach using CBF preprocessing is much better than those of MSTDE and traditional CNN. |
源URL | [http://159.226.59.140/handle/311008/9507] ![]() |
专题 | 历年期刊论文_2020年期刊论文 |
作者单位 | 中国科学院声学研究所 |
推荐引用方式 GB/T 7714 | 王文博;王臻;苏林;胡涛;任群言;Peter Gerstoft2;马力. Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment[J]. The Journal of the Acoustical Society of America,2020(未知):3633. |
APA | 王文博;王臻;苏林;胡涛;任群言;Peter Gerstoft2;马力.(2020).Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment.The Journal of the Acoustical Society of America(未知),3633. |
MLA | 王文博;王臻;苏林;胡涛;任群言;Peter Gerstoft2;马力."Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment".The Journal of the Acoustical Society of America .未知(2020):3633. |
入库方式: OAI收割
来源:声学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。