中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment

文献类型:期刊论文

作者Wang WB(王文博);  Wang Z(王臻);  Su L(苏林);  Hu T(胡涛);  Ren QY(任群言);  Peter Gerstoft2;  Ma L(马力)
刊名The Journal of the Acoustical Society of America
出版日期2020
期号未知页码:3633
DOI10.1121/10.0002911
英文摘要Multiple approaches for depth estimation in deep-ocean environments are discussed. First, a multispectral transformation for depth estimation (MSTDE) method based on the low-spatial-frequency interference in a constant sound speed is derived to estimate the source depth directly. To overcome the limitation of real sound-speed profiles and source bandwidths on the accuracy of MSTDE, a method based on a convolution neural network (CNN) and conventional beamforming (CBF) preprocessing is proposed. Further, transfer learning is adapted to tackle the effect of noise on the estimation result. At-sea data are used to test the performance of these methods, and results suggest that (1) the MSTDE can estimate the depth; however, the error increases with distance; (2) MSTDE error can be moderately compensated through a calculated factor; (3) the performance of deep-learning approach using CBF preprocessing is much better than those of MSTDE and traditional CNN.
源URL[http://159.226.59.140/handle/311008/9507]  
专题历年期刊论文_2020年期刊论文
作者单位中国科学院声学研究所
推荐引用方式
GB/T 7714
王文博;王臻;苏林;胡涛;任群言;Peter Gerstoft2;马力. Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment[J]. The Journal of the Acoustical Society of America,2020(未知):3633.
APA 王文博;王臻;苏林;胡涛;任群言;Peter Gerstoft2;马力.(2020).Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment.The Journal of the Acoustical Society of America(未知),3633.
MLA 王文博;王臻;苏林;胡涛;任群言;Peter Gerstoft2;马力."Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment".The Journal of the Acoustical Society of America .未知(2020):3633.

入库方式: OAI收割

来源:声学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。