一种基于AlBERT的用于恶意网络流量分类的新型迁移学习方法
文献类型:期刊论文
作者 | 韩陆超; 曾学文; 宋磊 |
刊名 | International Journal of Innovative Computing, Information and Control (IJICIC)
![]() |
出版日期 | 2020 |
期号 | 6页码:2103 |
ISSN号 | 1349-4198 |
DOI | "10.24507/ijicic.16.06.2103 " |
英文摘要 | In the studies of cybersecurity, malicious traffic detection is attracting more and more attention for its capability of detecting attacks. Almost all of the intrusion detection methods based on deep learning have poor data processing capacity with the increase of the data length. Most intrusion detection methods can only handle the header part of the traffic and omit valuable information from the payload, so they can not detect the malicious traffic when the hacker hides attack behavior in the payload. In this article, we propose an attention model that can process network traffic flow with adjustable length to detect payload-based attacks. Furthermore, we design a Flow Wasserstein GAN model to generate new network traffic data from the original data sets to enhance network packet data and protect user privacy. Our model has a hierarchical structure to build representations of bytes and packets on two levels. Moreover, two levels of attention mechanisms enable the model to pay attention to more important content when constructing the flow representation. The experiments based on the ISCX-2012 and ISCX-2017 datasets prove that the proposed model has higher performance in accuracy and true positive rate (TPR) than four state-of-the-art deep learning methods. The experiment shows that our model outperforms the existing HSAT-IDS in detection of the generated packets. |
URL标识 | 查看原文 |
源URL | [http://159.226.59.140/handle/311008/9524] ![]() |
专题 | 历年期刊论文_2020年期刊论文 |
作者单位 | 中国科学院声学研究所 |
推荐引用方式 GB/T 7714 | 韩陆超;曾学文;宋磊. 一种基于AlBERT的用于恶意网络流量分类的新型迁移学习方法[J]. International Journal of Innovative Computing, Information and Control (IJICIC),2020(6):2103. |
APA | 韩陆超;曾学文;宋磊.(2020).一种基于AlBERT的用于恶意网络流量分类的新型迁移学习方法.International Journal of Innovative Computing, Information and Control (IJICIC)(6),2103. |
MLA | 韩陆超;曾学文;宋磊."一种基于AlBERT的用于恶意网络流量分类的新型迁移学习方法".International Journal of Innovative Computing, Information and Control (IJICIC) .6(2020):2103. |
入库方式: OAI收割
来源:声学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。