Multi-Constrained Embedding for Accurate Community Detection on Undirected Networks
文献类型:期刊论文
作者 | Wang, Qingxian3; Liu, Xinyu3; Shang, Tianqi2; Liu, Zhigang1; Yang, Han3; Luo, Xin1![]() |
刊名 | IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING
![]() |
出版日期 | 2022-09-01 |
卷号 | 9期号:5页码:3675-3690 |
关键词 | Symmetric matrices Symbols Matrix decomposition Context modeling Task analysis Periodic structures Electronic mail Community detection network embedding non-negative matrix factorization non-negative model and alternating direction method of multipliers |
ISSN号 | 2327-4697 |
DOI | 10.1109/TNSE.2022.3176062 |
通讯作者 | Luo, Xin(luoxin21@cigit.ac.cn) |
英文摘要 | A Symmetric Non-negative Matrix Factorization (SNMF)-based network embedding model adopts a unique Latent Factor (LF) matrix for describing the symmetry of an undirected network, which reduces its representation ability to the target network and thus resulting in accuracy loss when performing community detection. To address this issue, this paper proposes a new undirected network embedding model, i.e., Alternating Direction Method of Multipliers (ADMM)-based, Modularity, Symmetry and Nonnegativity-constrained Embedding (AMSNE), which can be applicable to undirected, weighted or unweighted networks. It relies on two-fold ideas: a) Introducing the symmetry constraints into the model to correctly describe the symmetric of an undirected network without accuracy loss; and b) Adopting the ADMM principle to efficiently solve its constrained objective. Extensive experiments on eight real-world networks strongly evidence that the proposed AMSNE outperform several state-of-the-art models, making it suitable for real applications. |
资助项目 | National Natural Science Foundation of China[62072429] ; Major Science and Technology Projects of Sichuan Province[2018GZDZX0042] ; Major Science and Technology Projects of Sichuan Province[2020YFG0021] ; Sichuan Science and Technology Program[2021YFG0305] ; Sichuan Science and Technology Program[2022YFG0175] ; Fundamental Research Funds for the Central Universities[ZYGX2020ZB021] ; Fundamental Research Funds for the Central Universities[CAAIXSJLJJ2021-035A] ; Intelligent Terminal Key Laboratory of Sichuan Province[SCITLAB-0003] ; Intelligent Terminal Key Laboratory of Sichuan Province[SCITLAB-1003] |
WOS研究方向 | Engineering ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000852246800058 |
出版者 | IEEE COMPUTER SOC |
源URL | [http://119.78.100.138/handle/2HOD01W0/16401] ![]() |
专题 | 中国科学院重庆绿色智能技术研究院 |
通讯作者 | Luo, Xin |
作者单位 | 1.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China 2.Sichuan Univ, Chengdu 610207, Peoples R China 3.Univ Elect Sci & Technol China, Chengdu 610054, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Qingxian,Liu, Xinyu,Shang, Tianqi,et al. Multi-Constrained Embedding for Accurate Community Detection on Undirected Networks[J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING,2022,9(5):3675-3690. |
APA | Wang, Qingxian,Liu, Xinyu,Shang, Tianqi,Liu, Zhigang,Yang, Han,&Luo, Xin.(2022).Multi-Constrained Embedding for Accurate Community Detection on Undirected Networks.IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING,9(5),3675-3690. |
MLA | Wang, Qingxian,et al."Multi-Constrained Embedding for Accurate Community Detection on Undirected Networks".IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9.5(2022):3675-3690. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。