中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dynamic strength, reinforcing mechanism and damage of ceramic metal composites

文献类型:期刊论文

作者Lin, Kuixin; Zeng, Meng; Chen, Hongmei; Tao, Xiaoma; Ouyang, Yifang; Du, Yong3; Peng Q(彭庆)
刊名INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
出版日期2022-10
卷号231页码:107580
ISSN号0020-7403
关键词Shock wave Dislocation dynamic Hugoniot elastic limit Nanocomposites
DOI10.1016/j.ijmecsci.2022.107580
英文摘要Shock tolerance is desirable for ceramic particles-reinforced metal matrix composites in many applications, where the dislocation dynamics evolution under the extreme load is the key but still elusive. Herein, we have investigated the dislocation motion and interaction under shock loading of SiC/Al nanocomposites using molecular dynamics simulations. We have demonstrated that the plastic deformation occurs at an impact velocity (0.5 km/s) lower than the Hugoniot elastic limit of aluminum due to the reflected shear wave effect. The Al/SiC interfaces act as a dislocation emitter to control dislocation multiplication density and slip direction, opening a new pathway to achieve ultrahigh-strength via shock loading. When the impact velocity (1.0 or 1.5 km/s) exceeds the Hugoniot elastic limit, the effect of nanoparticles on dislocation structure has changed from multiplying to retarding dislocations. The spall strength of composites improves due to dislocations pile-up at interface. Instead, the damage in the matrix is exacerbated, owing to the enhanced residual peak stress and interface reflection waves. In addition, the effect of abnormal shock softening determined by atomic velocity is revealed, which could be suppressed by increasing impact energy dissipation. Meanwhile, dynamic compressive strength depends on pressure and dislocation structures evolution. Our atomistic insights might be helpful in designing advanced shock-tolerant materials.
学科主题Engineering, Mechanical ; Mechanics
分类号一类
语种英语
WOS记录号WOS:000856556000003
资助机构National Natural Science Foundation of China [11964003] ; Guangxi Natural Science Foundation [2019GXNSFAA185058, 2018GXNSFAA281291] ; LiYing Program of the Institute of Mechanics, Chinese Academy of Sciences [E1Z1011001]
其他责任者Ouyang, YF (corresponding author), Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China.
源URL[http://dspace.imech.ac.cn/handle/311007/90173]  
专题力学研究所_非线性力学国家重点实验室
作者单位1.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
2.Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
3.Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China
推荐引用方式
GB/T 7714
Lin, Kuixin,Zeng, Meng,Chen, Hongmei,et al. Dynamic strength, reinforcing mechanism and damage of ceramic metal composites[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,2022,231:107580.
APA Lin, Kuixin.,Zeng, Meng.,Chen, Hongmei.,Tao, Xiaoma.,Ouyang, Yifang.,...&彭庆.(2022).Dynamic strength, reinforcing mechanism and damage of ceramic metal composites.INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,231,107580.
MLA Lin, Kuixin,et al."Dynamic strength, reinforcing mechanism and damage of ceramic metal composites".INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES 231(2022):107580.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。