Dynamic strength, reinforcing mechanism and damage of ceramic metal composites
文献类型:期刊论文
作者 | Lin, Kuixin; Zeng, Meng; Chen, Hongmei; Tao, Xiaoma; Ouyang, Yifang; Du, Yong3; Peng Q(彭庆) |
刊名 | INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
![]() |
出版日期 | 2022-10 |
卷号 | 231页码:107580 |
关键词 | Shock wave Dislocation dynamic Hugoniot elastic limit Nanocomposites |
ISSN号 | 0020-7403 |
DOI | 10.1016/j.ijmecsci.2022.107580 |
英文摘要 | Shock tolerance is desirable for ceramic particles-reinforced metal matrix composites in many applications, where the dislocation dynamics evolution under the extreme load is the key but still elusive. Herein, we have investigated the dislocation motion and interaction under shock loading of SiC/Al nanocomposites using molecular dynamics simulations. We have demonstrated that the plastic deformation occurs at an impact velocity (0.5 km/s) lower than the Hugoniot elastic limit of aluminum due to the reflected shear wave effect. The Al/SiC interfaces act as a dislocation emitter to control dislocation multiplication density and slip direction, opening a new pathway to achieve ultrahigh-strength via shock loading. When the impact velocity (1.0 or 1.5 km/s) exceeds the Hugoniot elastic limit, the effect of nanoparticles on dislocation structure has changed from multiplying to retarding dislocations. The spall strength of composites improves due to dislocations pile-up at interface. Instead, the damage in the matrix is exacerbated, owing to the enhanced residual peak stress and interface reflection waves. In addition, the effect of abnormal shock softening determined by atomic velocity is revealed, which could be suppressed by increasing impact energy dissipation. Meanwhile, dynamic compressive strength depends on pressure and dislocation structures evolution. Our atomistic insights might be helpful in designing advanced shock-tolerant materials. |
学科主题 | Engineering, Mechanical ; Mechanics |
分类号 | 一类 |
语种 | 英语 |
WOS记录号 | WOS:000856556000003 |
资助机构 | National Natural Science Foundation of China [11964003] ; Guangxi Natural Science Foundation [2019GXNSFAA185058, 2018GXNSFAA281291] ; LiYing Program of the Institute of Mechanics, Chinese Academy of Sciences [E1Z1011001] |
其他责任者 | Ouyang, YF (corresponding author), Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China. |
源URL | [http://dspace.imech.ac.cn/handle/311007/90173] ![]() |
专题 | 力学研究所_非线性力学国家重点实验室 |
作者单位 | 1.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China 2.Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China 3.Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China |
推荐引用方式 GB/T 7714 | Lin, Kuixin,Zeng, Meng,Chen, Hongmei,et al. Dynamic strength, reinforcing mechanism and damage of ceramic metal composites[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,2022,231:107580. |
APA | Lin, Kuixin.,Zeng, Meng.,Chen, Hongmei.,Tao, Xiaoma.,Ouyang, Yifang.,...&彭庆.(2022).Dynamic strength, reinforcing mechanism and damage of ceramic metal composites.INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,231,107580. |
MLA | Lin, Kuixin,et al."Dynamic strength, reinforcing mechanism and damage of ceramic metal composites".INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES 231(2022):107580. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。