中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Modulating mechanical performances of metallic amorphous materials through phase gradient

文献类型:期刊论文

作者Guan, Yunlong; Wang YJ(王云江); Song, Weidong
刊名INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
出版日期2022-11
卷号234页码:107680
ISSN号0020-7403
关键词Metallic glasses Strength-ductility synergy Phase gradient Shear bands Molecular dynamics
DOI10.1016/j.ijmecsci.2022.107680
英文摘要Increasing strength is usually at the cost of sacrificing ductility in structural materials. The tradeoff becomes even conspicuous in a category of metallic amorphous materials, the so-called metallic glasses (MGs) featured without any atomic-scale translational symmetry. Therefore, there remains little room for simultaneous optimization of strength and ductility in MGs through tailoring the morphology and kinetics of structural imperfections. Here we propose an alternative strategy for modulating the mechanical properties of MGs through introducing proper content of compositional or phase gradient inspired by the mechanistic strain gradient theory. We design two types of CuZr-based phase gradient metallic glasses (PGMGs) with different compositional concentration gradient directions in either continuous or stepped gradient form. Extensive molecular dynamics simulations demonstrate that phase gradient raises the concentration of mechanically stable icosahedral and icosahedron-like Voronoi polyhedra and, thus, increases the strength of MGs. In terms of plastic deformation, free volume mismatch be-tween phases invalidates the autocatalytic activation mechanism of shear transformation zones, resulting in greater resistance to shear band propagation. The phase gradient also encourages branches of shear band and nucleation of multiple shear bands, which mechanism delocalizes deformation and postpones failure. These mechanisms lead to an improvement in the overall ductility of the PGMGs. The present strategy sheds light on evading the long-standing strength-ductility tradeoff in amorphous metals through extrinsic chemical and geometrical modulation that can be handled by appropriate thermal processing and fabrication technique.
学科主题Engineering, Mechanical ; Mechanics
分类号一类
语种英语
WOS记录号WOS:000860322500002
资助机构National Natural Science Foundation of China [12172056, 11972092, 12002049] ; Beijing Institute of Technology Research Fund Program for Young Scholars [XSQD-202102005] ; Key Laboratory of Computational Physics Grant [HX02021-24] ; project of State Key Laboratory of Explosion Science and Technology [QNKT22-10]
其他责任者Song, WD (corresponding author), Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China.
源URL[http://dspace.imech.ac.cn/handle/311007/90174]  
专题力学研究所_非线性力学国家重点实验室
作者单位1.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
2.Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Guan, Yunlong,Wang YJ,Song, Weidong. Modulating mechanical performances of metallic amorphous materials through phase gradient[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,2022,234:107680.
APA Guan, Yunlong,王云江,&Song, Weidong.(2022).Modulating mechanical performances of metallic amorphous materials through phase gradient.INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,234,107680.
MLA Guan, Yunlong,et al."Modulating mechanical performances of metallic amorphous materials through phase gradient".INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES 234(2022):107680.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。