中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping

文献类型:期刊论文

作者Wang, Tong2,3; Tang, Ronglin2,3; Li, Zhao-Liang1,4; Jiang, Yazhen1,3; Liu, Meng2,3; Niu, Lu2,3
刊名REMOTE SENSING
出版日期2019-04-01
卷号11期号:7页码:21
关键词evapotranspiration fusion multi-source satellite data Landsat 8 MODIS SADFAET
ISSN号2072-4292
DOI10.3390/rs11070761
通讯作者Tang, Ronglin(tangrl@lreis.ac.cn)
英文摘要Continuous high spatio-temporal resolution monitoring of evapotranspiration (ET) is critical for water resource management and the quantification of irrigation water efficiency at both global and local scales. However, available remote sensing satellites cannot generally provide ET data at both high spatial and temporal resolutions. Data fusion methods have been widely applied to estimate ET at a high spatio-temporal resolution. Nevertheless, most fusion methods applied to ET are initially used to integrate land surface reflectance, the spectral index and land surface temperature, and few studies completely consider the influencing factor of ET. To overcome this limitation, this paper presents an improved ET fusion method, namely, the spatio-temporal adaptive data fusion algorithm for evapotranspiration mapping (SADFAET), by introducing critical surface temperature (the corresponding temperature to decide soil moisture), importing the weights of surface ET-indicative similarity (the influencing factor of ET, which is estimated from remote sensing data) and modifying the spectral similarity (the differences in spectral characteristics of different spatial resolution images) for the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). We fused daily Moderate Resolution Imaging Spectroradiometer (MODIS) and periodic Landsat 8 ET data in the SADFAET for the experimental area downstream of the Heihe River basin from April to October 2015. The validation results, based on ground-based ET measurements, indicated that the SADFAET could successfully fuse MODIS and Landsat 8 ET data (mean percent error: -5%), with a root mean square error of 45.7 W/m(2), whereas the ESTARFM performed slightly worse, with a root mean square error of 50.6 W/m(2). The more physically explainable SADFAET could be a better alternative to the ESTARFM for producing ET at a high spatio-temporal resolution.
WOS关键词LAND-SURFACE TEMPERATURE ; MODIS ; RESOLUTION ; MODEL ; FIELD ; SOIL ; GEOSTATIONARY ; REFLECTANCE ; MODULATION ; MANAGEMENT
资助项目National Key R&D Program of China[2018YFA0605401] ; Beijing Municipal Science and Technology Project[Z181100005318003] ; Youth Innovation Promotion Association CAS[2015039] ; National Natural Science Foundation of China[41571351] ; National Natural Science Foundation of China[41571367]
WOS研究方向Remote Sensing
语种英语
WOS记录号WOS:000465549300026
出版者MDPI
资助机构National Key R&D Program of China ; Beijing Municipal Science and Technology Project ; Youth Innovation Promotion Association CAS ; National Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/59787]  
专题中国科学院地理科学与资源研究所
通讯作者Tang, Ronglin
作者单位1.CNRS, ICube, UdS, 300 Blvd Sebastien Brant,CS10413, F-67412 Illkirch Graffenstaden, France
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
3.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
4.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Agr Remote Sensing, Minist Agr, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Wang, Tong,Tang, Ronglin,Li, Zhao-Liang,et al. An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping[J]. REMOTE SENSING,2019,11(7):21.
APA Wang, Tong,Tang, Ronglin,Li, Zhao-Liang,Jiang, Yazhen,Liu, Meng,&Niu, Lu.(2019).An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping.REMOTE SENSING,11(7),21.
MLA Wang, Tong,et al."An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping".REMOTE SENSING 11.7(2019):21.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。