Estimating Maize Above-Ground Biomass Using 3D Point Clouds of Multi-Source Unmanned Aerial Vehicle Data at Multi-Spatial Scales
文献类型:期刊论文
作者 | Zhu, Wanxue6,7; Sun, Zhigang1,6,7,8; Peng, Jinbang6,7; Huang, Yaohuan2,7; Li, Jing6; Zhang, Junqiang3,4; Yang, Bin4; Liao, Xiaohan2,5,7 |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2019-11-02 |
卷号 | 11期号:22页码:22 |
关键词 | unmanned aerial vehicle above-ground biomass LiDAR crop height machine learning multispectral data SfM point clouds |
DOI | 10.3390/rs11222678 |
通讯作者 | Sun, Zhigang(sun.zhigang@igsnrr.ac.cn) |
英文摘要 | Crop above-ground biomass (AGB) is a key parameter used for monitoring crop growth and predicting yield in precision agriculture. Estimating the crop AGB at a field scale through the use of unmanned aerial vehicles (UAVs) is promising for agronomic application, but the robustness of the methods used for estimation needs to be balanced with practical application. In this study, three UAV remote sensing flight missions (using a multiSPEC-4C multispectral camera, a Micasense RedEdge-M multispectral camera, and an Alpha Series AL3-32 Light Detection and Ranging (LiDAR) sensor onboard three different UAV platforms) were conducted above three long-term experimental plots with different tillage treatments in 2018. We investigated the performances of the multi-source UAV-based 3D point clouds at multi-spatial scales using the traditional multi-variable linear regression model (OLS), random forest (RF), backpropagation neural network (BP), and support vector machine (SVM) methods for accurate AGB estimation. Results showed that crop height (CH) was a robust proxy for AGB estimation, and that high spatial resolution in CH datasets helps to improve maize AGB estimation. Furthermore, the OLS, RF, BP, and SVM methods all maintained an acceptable accuracy for AGB estimation; however, the SVM and RF methods performed slightly more robustly. This study is expected to optimize UAV systems and algorithms for specific agronomic applications. |
WOS关键词 | LEAF-AREA INDEX ; CROP SURFACE MODELS ; WINTER-WHEAT ; VEGETATION INDEXES ; HYPERSPECTRAL IMAGERY ; CHLOROPHYLL CONTENT ; CANOPY HEIGHT ; UAV ; YIELD ; RESOLUTION |
资助项目 | Key Projects of the Chinese Academy of Sciences[KFZD-SW-319] ; National Natural Science Foundation of China[31570472] ; National Natural Science Foundation of China[31870421] ; National Natural Science Foundation of China[41771388] ; Science and Technology Service Network Initiative of the Chinese Academy of Sciences[KFJ-STS-ZDTP-049] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19040303] ; National Key Research and Development Program of China[2017YFC0503805] |
WOS研究方向 | Remote Sensing |
语种 | 英语 |
WOS记录号 | WOS:000502284300083 |
出版者 | MDPI |
资助机构 | Key Projects of the Chinese Academy of Sciences ; National Natural Science Foundation of China ; Science and Technology Service Network Initiative of the Chinese Academy of Sciences ; Strategic Priority Research Program of the Chinese Academy of Sciences ; National Key Research and Development Program of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/131151] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Sun, Zhigang |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, CAS Engn Lab Yellow River Delta Modern Agr, Beijing 100101, Peoples R China 2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China 3.Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China 4.Yusense Informat Technol & Equipment Qingdao Ltd, Qingdao 266000, Shandong, Peoples R China 5.Chinese Acad Sci, Res Ctr UAV Applicat & Regulat, Beijing 100101, Peoples R China 6.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China 7.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China 8.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Shandong Dongying Inst Geog Sci, Dongying 257000, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Wanxue,Sun, Zhigang,Peng, Jinbang,et al. Estimating Maize Above-Ground Biomass Using 3D Point Clouds of Multi-Source Unmanned Aerial Vehicle Data at Multi-Spatial Scales[J]. REMOTE SENSING,2019,11(22):22. |
APA | Zhu, Wanxue.,Sun, Zhigang.,Peng, Jinbang.,Huang, Yaohuan.,Li, Jing.,...&Liao, Xiaohan.(2019).Estimating Maize Above-Ground Biomass Using 3D Point Clouds of Multi-Source Unmanned Aerial Vehicle Data at Multi-Spatial Scales.REMOTE SENSING,11(22),22. |
MLA | Zhu, Wanxue,et al."Estimating Maize Above-Ground Biomass Using 3D Point Clouds of Multi-Source Unmanned Aerial Vehicle Data at Multi-Spatial Scales".REMOTE SENSING 11.22(2019):22. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。