中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Estimating daily ground-level PM2.5 in China with random-forest-based spatiotemporal kriging

文献类型:期刊论文

作者Shao, Yanchuan2; Ma, Zongwei2,3; Wang, Jianghao1,4; Bi, Jun2
刊名SCIENCE OF THE TOTAL ENVIRONMENT
出版日期2020-10-20
卷号740页码:12
关键词Aerosol optical depth PM2.5 Random forest Spatiotemporal kriging
ISSN号0048-9697
DOI10.1016/j.scitotenv.2020.139761
通讯作者Ma, Zongwei(zma@nju.edu.cn) ; Wang, Jianghao(wangjh@lreis.ac.cn)
英文摘要Ambient fine particulate matter (PM2.5) plays an important role in cardiovascular- and respiratory-related death. Empirical statistical models have been widely applied to estimate ambient PM2.5 concentrations with correlated variables. However, empirical statistical models ignore the nonlinear relationship between PM2.5 and covariates and assume that residuals are independent and identically distributed random variables. Here, a hybrid approach, which integrates random forest (RF) model and spatiotemporal kriging, is proposed to estimate the daily PM2.5 concentration. The proposed RF-based spatiotemporal kriging (RFSTK) model effectively captures nonlinear interactions among different predictors and accounts for the detailed spatiotemporal dependence of the PM2.5 concentration. The RFSTK model performs well in predicting the daily PM2.5 concentration. The 10-fold overall cross-validation R-2 value is 0.881, the mean absolute error (MAE) is 6.89 mu g/m(3) and the root-mean-square error (RMSE) is 11.48 mu g/m(3), indicating better performance than the original RF model (R-2 = 0.848, MAE = 7.88 mu g/m(3) and RMSE = 13.26 mu g/m(3)). The spatiotemporal prediction of the PM2.5 concentration shows that approximately 90.04% of China had a daily exposure to PM2.5 in 2018 that was below the nation's air quality standard of 75 mu g/m(3). The proposed hybrid method is entirely general and can be applied to map the ambient PM2.5 concentration over a large spatiotemporal domain. (C) 2020 Elsevier B.V. All rights reserved.
WOS关键词AEROSOL OPTICAL DEPTH ; SATELLITE ; MODEL ; PM10 ; REGRESSION ; EXPOSURE ; CLIMATE
资助项目National Natural Science Foundation of China[41531174] ; National Natural Science Foundation of China[71921003] ; National Natural Science Foundation of China[91644220]
WOS研究方向Environmental Sciences & Ecology
语种英语
WOS记录号WOS:000562059800004
出版者ELSEVIER
资助机构National Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/158032]  
专题中国科学院地理科学与资源研究所
通讯作者Ma, Zongwei; Wang, Jianghao
作者单位1.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
2.Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Jiangsu, Peoples R China
3.Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Jiangsu, Peoples R China
4.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China
推荐引用方式
GB/T 7714
Shao, Yanchuan,Ma, Zongwei,Wang, Jianghao,et al. Estimating daily ground-level PM2.5 in China with random-forest-based spatiotemporal kriging[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2020,740:12.
APA Shao, Yanchuan,Ma, Zongwei,Wang, Jianghao,&Bi, Jun.(2020).Estimating daily ground-level PM2.5 in China with random-forest-based spatiotemporal kriging.SCIENCE OF THE TOTAL ENVIRONMENT,740,12.
MLA Shao, Yanchuan,et al."Estimating daily ground-level PM2.5 in China with random-forest-based spatiotemporal kriging".SCIENCE OF THE TOTAL ENVIRONMENT 740(2020):12.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。