An Artificial Neuron Network With Parameterization Scheme for Estimating Net Surface Shortwave Radiation From Satellite Data Under Clear Sky - Application to Simulated GF-5 Data Set
文献类型:期刊论文
作者 | Si, Menglin3,4,5; Tang, Bo-Hui2,3,5; Li, Zhao-Liang3,4; Nerry, Francoise4; Zhang, Xia1; Shang, Guofei1 |
刊名 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
出版日期 | 2021-05-01 |
卷号 | 59期号:5页码:4262-4272 |
关键词 | Artificial neuron network (ANN) Chinese Gaofen-5 (GF-5) net surface shortwave radiation (NSSR) top of atmosphere (TOA) broadband albedo |
ISSN号 | 0196-2892 |
DOI | 10.1109/TGRS.2020.3009647 |
通讯作者 | Tang, Bo-Hui(tangbh@igsnrr.ac.cn) ; Shang, Guofei(shangguofei@hgu.edu.cn) |
英文摘要 | Net surface shortwave radiation (NSSR) is a key parameter that drives the surface material exchange and energy balance. Herein, we propose an improved artificial neuron network (ANN) with parameterized (ANN-P) method to first calculate the albedo at the top of atmosphere (TOA) by considering the surface non-Lambertian effect. Subsequently, the NSSR is estimated based on the relationship between TOA broadband albedo and the Earth's surface-absorbed shortwave radiation using a parameterized method under clear sky. The modeling process is implemented with Chinese Gaofen-5 (GF-5) visible/near-infrared channels data simulated via MODTRAN. For comparison, a previously reported lookup table (LUT) with parameterized (LUT-P) method and an ANN method are also employed. The performances of all these methods are evaluated. In terms of model simulation part, the root-mean-square errors (RMSEs) are 15.01 (17.07), 10.04 (13.67), and 20.39 (29.99) W/m(2) for land, water, and snow/ice surfaces, respectively, for the ANN-P (versus LUT-P) method. Their mean bias errors (MBEs) are within 0.9 W/m(2). With respect to the direct ANN method, it shows the highest accuracy yet relatively large deviation for water surface. Additionally, the sensitivity analysis of water vapor content (WVC) confirms that the ANN-P method is more stable than the LUT-P and ANN methods and is, thereby, recommended for clear-sky NSSR estimation. Finally, the ground validations indicate that the mean RMSEs (MBEs) for the LUT-P, ANN-P, and ANN methods are 49.33 (-3.01), 47.55 (1.75), and 104.24 (-75.72) W/m(2), respectively. |
WOS关键词 | ANGULAR-DISTRIBUTION MODELS ; SOLAR-RADIATION ; ATMOSPHERE RADIATION ; FLUX ESTIMATION ; TOP ; RESOLUTION ; PRODUCTS ; REFLECTANCE ; TEMPERATURE ; ALGORITHM |
资助项目 | National Natural Science Foundation of China[41871244] ; Innovation Project of LREIS[O88RA801YA] |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000642096400046 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; Innovation Project of LREIS |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/161600] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Tang, Bo-Hui; Shang, Guofei |
作者单位 | 1.Hebei GEO Univ, Coll Land Resources & Urban & Rural Planning, Shijiazhuang 050031, Hebei, Peoples R China 2.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China 3.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China 4.CNRS Univ Strasbourg, ICube Lab, UMR 7357, F-67412 Illkirch Graffenstaden, France 5.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Si, Menglin,Tang, Bo-Hui,Li, Zhao-Liang,et al. An Artificial Neuron Network With Parameterization Scheme for Estimating Net Surface Shortwave Radiation From Satellite Data Under Clear Sky - Application to Simulated GF-5 Data Set[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2021,59(5):4262-4272. |
APA | Si, Menglin,Tang, Bo-Hui,Li, Zhao-Liang,Nerry, Francoise,Zhang, Xia,&Shang, Guofei.(2021).An Artificial Neuron Network With Parameterization Scheme for Estimating Net Surface Shortwave Radiation From Satellite Data Under Clear Sky - Application to Simulated GF-5 Data Set.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,59(5),4262-4272. |
MLA | Si, Menglin,et al."An Artificial Neuron Network With Parameterization Scheme for Estimating Net Surface Shortwave Radiation From Satellite Data Under Clear Sky - Application to Simulated GF-5 Data Set".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 59.5(2021):4262-4272. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。