Using multiple linear regression and random forests to identify spatial poverty determinants in rural China
文献类型:期刊论文
作者 | Liu, Mengxiao2,3; Hu, Shan2; Ge, Yong2,3; Heuvelink, Gerard B. M.1,4; Ren, Zhoupeng2; Huang, Xiaoran2 |
刊名 | SPATIAL STATISTICS
![]() |
出版日期 | 2021-04-01 |
卷号 | 42页码:19 |
关键词 | Poverty Spatial Determinants LMG Random forest Variable importance |
ISSN号 | 2211-6753 |
DOI | 10.1016/j.spasta.2020.100461 |
通讯作者 | Ge, Yong(gey@lreis.ac.cn) |
英文摘要 | Identifying poverty determinants in a region is crucial for taking effective poverty reduction measures. This paper utilizes two variable importance analysis methods to identify the relative importance of different geographic factors to explain the spatial distribution of poverty: the Lindeman, Merenda, and Gold (LMG) method used in multiple linear regression (MLR) and variable importance used in random forest (RF) machine learning. A case study was conducted in Yunyang, a poverty-stricken county in China, to evaluate the performances of the two methods for identifying village-level poverty determinants. The results indicated that: (1) MLR and RF had similar explanation accuracy; (2) LMG and RF were consistent in the three main determinants of poverty; (3) LMG better identified the importance of variables that were highly related to poverty but correlated with other variables, while RF better identified the non-linear relationships between poverty and explanatory variables; (4) accessibility metrics are the most important variables influencing poverty in Yunyang and have a linear relationship with poverty. (C) 2020 Elsevier B.V. All rights reserved. |
资助项目 | Key Technologies Research and Development Program of China[2012BAH33B01] |
WOS研究方向 | Geology ; Mathematics ; Remote Sensing |
语种 | 英语 |
WOS记录号 | WOS:000635278600002 |
出版者 | ELSEVIER SCI LTD |
资助机构 | Key Technologies Research and Development Program of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/161902] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Ge, Yong |
作者单位 | 1.ISRIC World Soil Informat, POB 353, NL-6700 AJ Wageningen, Netherlands 2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Wageningen Univ, Soil Geog & Landscape Grp, POB 47, NL-6700 AA Wageningen, Netherlands |
推荐引用方式 GB/T 7714 | Liu, Mengxiao,Hu, Shan,Ge, Yong,et al. Using multiple linear regression and random forests to identify spatial poverty determinants in rural China[J]. SPATIAL STATISTICS,2021,42:19. |
APA | Liu, Mengxiao,Hu, Shan,Ge, Yong,Heuvelink, Gerard B. M.,Ren, Zhoupeng,&Huang, Xiaoran.(2021).Using multiple linear regression and random forests to identify spatial poverty determinants in rural China.SPATIAL STATISTICS,42,19. |
MLA | Liu, Mengxiao,et al."Using multiple linear regression and random forests to identify spatial poverty determinants in rural China".SPATIAL STATISTICS 42(2021):19. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。