中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants

文献类型:期刊论文

作者Li, Lianfa1,2
刊名SPATIAL STATISTICS
出版日期2021-10-01
卷号45页码:28
关键词Constrained optimization Domain knowledge Spatiotemporal patterns Air pollutant Prediction Uncertainty
ISSN号2211-6753
DOI10.1016/j.spasta.2021.100533
通讯作者Li, Lianfa(lilf@lreis.ac.cn)
英文摘要For exposure estimation of air pollutants, data measurement errors and modeling uncertainty may lead to estimation bias and abnormal predictions and relationships between variables. This paper proposes a method of geospatial constrained optimization and deep learning to reliably simulate and predict spatiotemporal trends of air pollutants. In the proposed method, k-nearest neighbors (k-NN) was first used to retrieve the nearest samples to spatialize regular local temporal basis functions at each target location or subregion; then, a convolutional neural network (CNN) was used to extrapolate temporal basis functions for prediction. Domain and empirical knowledge was embedded in extensive constrained optimization to obtain reasonable simulations and predictions. Bootstrapping was used to estimate the uncertainty of constrained optimized values. The method reduced the bias in the point estimates and obtained robust predictions and their uncertainty estimates of spatiotemporal trend for each spatial target location. In the location-based validations of NO2, NOx and PM2.5 in California, even with limited noise input, the proposed method captured the primary spatiotemporal variability (correlation with measured values: 0.75-0.91; explaining 55-84% of the variance). In addition, compared with generalized additive spatiotemporal model, kernel smoother and CNN, the proposed method made one-year reliable spatiotemporal forecasts of weekly averages. The proposed method has important implications for reducing the estimation bias and predicting trends in the air pollutant spatiotemporal fields. (C) 2021 Elsevier B.V. All rights reserved.
WOS关键词MEASUREMENT ERROR ; MODELS ; CALIFORNIA ; RANGE ; PM2.5
资助项目Nvidia Corporation
WOS研究方向Geology ; Mathematics ; Remote Sensing
语种英语
WOS记录号WOS:000701779300006
出版者ELSEVIER SCI LTD
资助机构Nvidia Corporation
源URL[http://ir.igsnrr.ac.cn/handle/311030/165780]  
专题中国科学院地理科学与资源研究所
通讯作者Li, Lianfa
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Datun Rd, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Lianfa. Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants[J]. SPATIAL STATISTICS,2021,45:28.
APA Li, Lianfa.(2021).Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants.SPATIAL STATISTICS,45,28.
MLA Li, Lianfa."Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants".SPATIAL STATISTICS 45(2021):28.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。