Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks
文献类型:期刊论文
作者 | Mi, Chunlei1,2; Cheng, Shifen1,2; Lu, Feng1,2 |
刊名 | ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION
![]() |
出版日期 | 2022-03-01 |
卷号 | 11期号:3页码:14 |
关键词 | taxi-calling demands prediction residual attention graph convolutional long short-term memory networks deep learning pattern dependence |
DOI | 10.3390/ijgi11030185 |
通讯作者 | Cheng, Shifen(chengsf@lreis.ac.cn) |
英文摘要 | Predicting taxi-calling demands at the urban area level is vital to coordinate the supply-demand balance of the urban taxi system. Differing travel patterns, the impact of external data, and the expression of dynamic spatiotemporal demand dependence pose challenges to predicting demand. Here, a framework using residual attention graph convolutional long short-term memory networks (RAGCN-LSTMs) is proposed to predict taxi-calling demands. It consists of a spatial dependence (SD) extractor, which extracts SD features; an external dependence extractor, which extracts traffic environment-related features; a pattern dependence (PD) extractor, which extracts the PD of demands for different zones; and a temporal dependence extractor and predictor, which leverages the abovementioned features into an LSTM model to extract temporal dependence and predict demands. Experiments were conducted on taxi-calling records of Shanghai City. The results showed that the prediction accuracies of the RAGCN-LSTMs model were a mean absolute error of 0.8664, a root mean square error of 1.4965, and a symmetric mean absolute percentage error of 43.11%. It outperformed both classical time-series prediction methods and other deep learning models. Further, to illustrate the advantages of the proposed model, we investigated its predicting performance in various demand densities in multiple urban areas and proved its robustness and superiority. |
资助项目 | National Natural Science Foundation of China[42101423] ; China Postdoctoral Science Foundation[2020M680655] ; China Postdoctoral Science Foundation[2021T140656] |
WOS研究方向 | Computer Science ; Physical Geography ; Remote Sensing |
语种 | 英语 |
WOS记录号 | WOS:000776829400001 |
出版者 | MDPI |
资助机构 | National Natural Science Foundation of China ; China Postdoctoral Science Foundation |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/173612] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Cheng, Shifen |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 | Mi, Chunlei,Cheng, Shifen,Lu, Feng. Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks[J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION,2022,11(3):14. |
APA | Mi, Chunlei,Cheng, Shifen,&Lu, Feng.(2022).Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks.ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION,11(3),14. |
MLA | Mi, Chunlei,et al."Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks".ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 11.3(2022):14. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。