中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid

Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants & nbsp; (vol 45 , 100533,& nbsp;2021)

文献类型:期刊论文

作者Li, Lianfa1,2
刊名SPATIAL STATISTICS
出版日期2022-04-01
卷号48页码:1
ISSN号2211-6753
DOI10.1016/j.spasta.2022.100589
通讯作者Li, Lianfa(lilf@lreis.ac.cn)
资助项目National Natural Science Foundation of China[41871351] ; National Natural Science Foundation of China[42071369] ; Chinese Academy of Sciences[XDA19040501]
WOS研究方向Geology ; Mathematics ; Remote Sensing
语种英语
WOS记录号WOS:000788835800002
出版者ELSEVIER SCI LTD
资助机构National Natural Science Foundation of China ; Chinese Academy of Sciences
源URL[http://ir.igsnrr.ac.cn/handle/311030/175926]  
专题中国科学院地理科学与资源研究所
通讯作者Li, Lianfa
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Datun Rd, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Lianfa.

Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants & nbsp; (vol 45 , 100533,& nbsp;2021)

[J]. SPATIAL STATISTICS,2022,48:1.
APA Li, Lianfa.(2022).

Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants & nbsp; (vol 45 , 100533,& nbsp;2021)

.SPATIAL STATISTICS,48,1.
MLA Li, Lianfa."

Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants & nbsp; (vol 45 , 100533,& nbsp;2021)

".SPATIAL STATISTICS 48(2022):1.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。