Global estimates of 500 m daily aerodynamic roughness length from MODIS data
文献类型:期刊论文
作者 | Peng, Zhong2,3; Tang, Ronglin2,3; Jiang, Yazhen2,3; Liu, Meng1; Li, Zhao-Liang1,3 |
刊名 | ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
![]() |
出版日期 | 2022 |
卷号 | 183页码:336-351 |
关键词 | Aerodynamic roughness length Machine learning MODIS Evapotranspiration |
ISSN号 | 0924-2716 |
DOI | 10.1016/j.isprsjprs.2021.11.015 |
通讯作者 | Tang, Ronglin(tangrl@lreis.ac.cn) |
英文摘要 | Aerodynamic roughness length (z0(m)) is a key parameter in the characterization of land surface turbulent heat fluxes and widely used in many surface and climate-related process models. The global products of time series of z0m at finer spatio-temporal resolution, however, have never been publicly available. Here we presented a practical method for global estimates of 500 m daily z0(m) with a combination of machine learning techniques, wind profile equation, observations from 273 sites and MODIS remote sensing data. Results showed that the random forest (RF) model outperformed the deep neural network (DNN) and convolutional neural network (CNN) models, and it could well reproduce the magnitude and temporal variability of daily z0(m) at almost all sites for all land cover types. In the validation of the RF-estimated daily z0(m) with the in-situ observations, the root mean square error (RMSE) varied between 0.02 m and 0.09 m, the mean absolute error (MAE) varied between 0.01 m and 0.05 m and the coefficient of determination (R2) was 1 for medium-to-high canopy shrublands, savannas and forests; for short-canopy croplands, grasslands and wetlands, the RMSE and MAE were 0.02 m and 0.01 m, respectively, and the R2 varied between 0.94 and 1. Compared to the Climate Forecast System Version 2 (CFSv2, 0.3/monthly) and ECMWF Reanalysis v5 (ERA5, 0.25/monthly) products in 2019, the RF-estimated z0m was found to have the similar global spatial pattern but significantly larger temporal variability, and it also showed a higher and lower global mean of z0(m) over forests and non-forests, respectively. The RF-estimated z0(m) displayed a higher temporal variability but a similar global spatial pattern of this variability compared to the CFSv2, whereas the ERA5 z0m product exhibited almost no temporal variability except for grasslands and croplands. This study is beneficial for improving the simulation of the momentum, water and energy transfer between land and atmosphere and helping boost the development of high-resolution land surface models and Earth system models. |
WOS关键词 | ZERO-PLANE DISPLACEMENT ; ENERGY BALANCE MODELS ; RANDOM FOREST ; SURFACE ; PARAMETERIZATION ; SYSTEM ; EVAPOTRANSPIRATION ; HEIGHT |
资助项目 | National Key R&D Program of China[2018YFA0605401] ; National Natural Science Foundation of China[41922009] ; National Natural Science Foundation of China[42071332] |
WOS研究方向 | Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000782583200002 |
出版者 | ELSEVIER |
资助机构 | National Key R&D Program of China ; National Natural Science Foundation of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/176022] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Tang, Ronglin |
作者单位 | 1.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Agr Remote Sensing, Minist Agr & Rural Affaires, Beijing 100081, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 |
Peng, Zhong,Tang, Ronglin,Jiang, Yazhen,et al. Global estimates of 500 m daily aerodynamic roughness length from MODIS data [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,2022,183:336-351. |
APA |
Peng, Zhong,Tang, Ronglin,Jiang, Yazhen,Liu, Meng,&Li, Zhao-Liang.(2022). Global estimates of 500 m daily aerodynamic roughness length from MODIS data .ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,183,336-351. |
MLA |
Peng, Zhong,et al." Global estimates of 500 m daily aerodynamic roughness length from MODIS data ".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 183(2022):336-351. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。