Density-based clustering for bivariate-flow data
文献类型:期刊论文
作者 | Shu, Hua1; Pei, Tao1,2,3; Song, Ci1,3; Chen, Jie1; Chen, Xiao1,3; Guo, Sihui1,3; Liu, Yaxi1,3; Wang, Xi1,3; Wang, Xuyang1; Zhou, Chenghu1 |
刊名 | INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
![]() |
出版日期 | 2022-05-17 |
页码 | 21 |
关键词 | Origin-destination flow bivariate flow density-based clustering spatial statistics |
ISSN号 | 1365-8816 |
DOI | 10.1080/13658816.2022.2073595 |
通讯作者 | Pei, Tao(peit@lreis.ac.cn) |
英文摘要 | Geographical flows reflect the movements, spatial interactions or connections among locations and are generally abstracted as origin-destination (OD) flows. In this context, clustering is a spatial pattern describing a group of flows with adjacent O and D points. For data composed of two types of flows (bivariate-flow data), a bivariate-flow cluster is a cluster comprising two types of flows, at least one of which exhibits a clustering pattern. In a bivariate-flow cluster, varying flow density combinations imply different meanings. For instance, a cluster with high-density travel flows on both weekdays (type A) and weekends (type B) may be associated with entertainment, whereas high-density flows on weekdays and sparse flows on weekends may reveal work-related travel. However, identifying bivariate-flow clusters with different flow density combinations is still an unsolved problem. To this end, we extend a bivariate-point clustering method and propose a density-based clustering method for bivariate flows. The simulation experiments verify model robustness. In a case study, we apply this method to extract clusters of bivariate-flow data comprising Beijing taxi OD flows of different periods, and identify clusters of work-related, entertainment, tourism, or egress and return travels. These results demonstrate the capability of our method in detecting bivariate-flow clusters. |
WOS关键词 | ORIGIN-DESTINATION FLOWS ; K-FUNCTION ; DECOMPOSITION ; DOMAIN |
资助项目 | National Natural Science Foundation of China[42101431] ; National Natural Science Foundation of China[42071436] ; China Postdoctoral Science Foundation[2020M680656] ; National Key R&D Program of China[2017YFB0503604] |
WOS研究方向 | Computer Science ; Geography ; Physical Geography ; Information Science & Library Science |
语种 | 英语 |
WOS记录号 | WOS:000797377400001 |
出版者 | TAYLOR & FRANCIS LTD |
资助机构 | National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; National Key R&D Program of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/177079] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
通讯作者 | Pei, Tao |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China 2.Jiangsu Ctr Collaborat Innovat Geog Informat Res, Nanjing, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Shu, Hua,Pei, Tao,Song, Ci,et al. Density-based clustering for bivariate-flow data[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2022:21. |
APA | Shu, Hua.,Pei, Tao.,Song, Ci.,Chen, Jie.,Chen, Xiao.,...&Zhou, Chenghu.(2022).Density-based clustering for bivariate-flow data.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,21. |
MLA | Shu, Hua,et al."Density-based clustering for bivariate-flow data".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE (2022):21. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。