基于EM-EBF模型的遥感影像分类方法研究
文献类型:期刊论文
作者 | 骆剑承; 郑江; 裴韬; 明冬萍; 陈秋晓; 沈占锋 |
刊名 | 中国图象图形学报
![]() |
出版日期 | 2005 |
卷号 | 10.0期号:006页码:698 |
关键词 | 人工神经网络 遥感影像分类 椭球径向基函数 EM算法 混合密度 |
ISSN号 | 1006-8961 |
英文摘要 | 椭球径向基函数神经网络(EBF)是在径向基函数(RBF)映射理论基础上的改进。在保留RBF3层网络结构基础上,EBF采用了最大期望算法来估计特征空间的混合密度分布参数,用椭球体集合来分解混合密度分布,从而构造了神经网络的中间层基函数的状态。由于遥感数据在特征空间中通常表现为混合密度分布,EBF模型能够充分利用期望最大(EM)算法获得的最大似然参数估计得到更合理的特征空间的密度分解模型,从而使得:EBF模型能够保留RBF非线性复杂映射能力的同时,获得更合理的分类结果。为此提出了基于EBF的遥感分类方法,试验结果表明EBF方法比RBF方法网络连接更简单、分类精度更高。 |
语种 | 英语 |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/153211] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
作者单位 | 中国科学院地理科学与资源研究所 |
推荐引用方式 GB/T 7714 | 骆剑承,郑江,裴韬,等. 基于EM-EBF模型的遥感影像分类方法研究[J]. 中国图象图形学报,2005,10.0(006):698. |
APA | 骆剑承,郑江,裴韬,明冬萍,陈秋晓,&沈占锋.(2005).基于EM-EBF模型的遥感影像分类方法研究.中国图象图形学报,10.0(006),698. |
MLA | 骆剑承,et al."基于EM-EBF模型的遥感影像分类方法研究".中国图象图形学报 10.0.006(2005):698. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。