中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Automatic classification of fine-scale mountain vegetation based on mountain altitudinal belt

文献类型:期刊论文

作者Zhang, Junyao1,2; Yao, Yonghui1; Suo, Nandongzhu1,2
刊名PLOS ONE
出版日期2020-08-25
卷号15期号:8页码:25
ISSN号1932-6203
DOI10.1371/journal.pone.0238165
通讯作者Yao, Yonghui(yaoyh@lreis.ac.cn)
英文摘要Vegetation mapping is of considerable significance to both geoscience and mountain ecology, and the improved resolution of remote sensing images makes it possible to map vegetation at a finer scale. While the automatic classification of vegetation has gradually become a research hotspot, real-time and rapid collection of samples has become a bottleneck. How to achieve fine-scale classification and automatic sample selection at the same time needs further study. Stratified sampling based on appropriate prior knowledge is an effective sampling method for geospatial objects. Therefore, based on the idea of stratified sampling, this paper used the following three steps to realize the automatic selection of representative samples and classification of fine-scale mountain vegetation: 1) using Mountain Altitudinal Belt (MAB) distribution information to stratify the study area into multiple vegetation belts; 2) selecting and correcting samples through iterative clustering at each belt automatically; 3) using RF (Random Forest) classifier with strong robustness to achieve automatic classification. The average sample accuracy of nine vegetation formations was 0.933, and the total accuracy of the classification result was 92.2%, with the kappa coefficient of 0.910. The results showed that this method could automatically select high-quality samples and obtain a high-accuracy vegetation map. Compared with the traditional vegetation mapping method, this method greatly improved the efficiency, which is of great significance for the fine-scale mountain vegetation mapping in large-scale areas.
WOS关键词REMOTE-SENSING IMAGES ; LAND-COVER ; TAIBAI MOUNTAIN ; POPULATION-STRUCTURE ; RANDOM FOREST ; AREA ; IDENTIFICATION ; VALIDATION ; VARIANCE ; ACCURACY
资助项目National Natural Science Foundation of China[41871350] ; National Natural Science Foundation of China[41571099]
WOS研究方向Science & Technology - Other Topics
语种英语
WOS记录号WOS:000565553400015
出版者PUBLIC LIBRARY SCIENCE
资助机构National Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/157928]  
专题中国科学院地理科学与资源研究所
通讯作者Yao, Yonghui
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Skate Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Junyao,Yao, Yonghui,Suo, Nandongzhu. Automatic classification of fine-scale mountain vegetation based on mountain altitudinal belt[J]. PLOS ONE,2020,15(8):25.
APA Zhang, Junyao,Yao, Yonghui,&Suo, Nandongzhu.(2020).Automatic classification of fine-scale mountain vegetation based on mountain altitudinal belt.PLOS ONE,15(8),25.
MLA Zhang, Junyao,et al."Automatic classification of fine-scale mountain vegetation based on mountain altitudinal belt".PLOS ONE 15.8(2020):25.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。