中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index

文献类型:期刊论文

作者Yuan, Huanhuan1,2; Wu, Chaoyang1,2; Lu, Linlin3; Wang, Xiaoyue1,2
刊名ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
出版日期2018-10-01
卷号144页码:390-399
关键词Phenology Evergreen conifer forests T-min T-max NDVI/EVI
ISSN号0924-2716
DOI10.1016/j.isprsjprs.2018.08.013
英文摘要Accurate estimation of vegetation phenology (the start/end of growing season, SOS/EOS) is important to understand the feedbacks of vegetation to meteorological circumstances. Because the evergreen forests have limited change in greenness, there are relatively less study to predict evergreen conifer forests phenology, especially for EOS in autumn. Using 11-year (2000-2010) records of MODIS normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), together with gross primary production (GPP) and temperature data at five evergreen conifer forests flux sites in Canada, we comprehensively evaluated the performances of several variables in modeling flux-derived EOS. Results showed that neither NDVI nor EVI can be used to predict EOS as they had no significant correlation with ground observations. In comparison, temperature had a better predictive strength for EOS, and R-2 between EOS and mean temperature (T-mean), the maximum temperature (T-max, daytime temperature) and the minimum temperature (T-min, nighttime temperature) were 0.45 (RMSE = 5.1 days), 0.32 (RMSE = 5.7 days) and 0.58 (RMSE = 4.6 days), respectively. These results suggest an unreported role of nighttime temperature in regulating EOS of evergreen forests, in comparison with previous study showing leaf-out in spring by daytime temperature. Furthermore, we demonstrated that it may be because nighttime temperature has a higher relationship with soil temperature (T-s) (R-2 = 0.67, p < 0.05). We then developed a new model combining T-min and EVI, which improved EOS modeling greatly both for these five flux sites and also for data collected at nine PhenoCam sites. Our results imply that the accuracy of current remote sensing VI estimated EOS should be used cautiously. In particular, we revealed the usefulness of nighttime temperature in modeling EOS of evergreen forests, which may be of potential importance for future ecosystem models.
WOS关键词DIGITAL REPEAT PHOTOGRAPHY ; CONTIGUOUS UNITED-STATES ; LAND-SURFACE PHENOLOGY ; SPRING PHENOLOGY ; INTERANNUAL VARIABILITY ; NORTHERN-HEMISPHERE ; AUTUMN PHENOLOGY ; ECOSYSTEM PRODUCTIVITY ; CARBON EXCHANGES ; CLIMATE-CHANGE
资助项目national Key R&D program of China[2018YFA0606101] ; Key Research Program of Frontier Sciences, CAS[QYZDB-SSW-DQC011] ; National Natural Science Foundation of China[41522109]
WOS研究方向Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000447109900028
出版者ELSEVIER SCIENCE BV
源URL[http://ir.igsnrr.ac.cn/handle/311030/52693]  
专题陆地表层格局与模拟院重点实验室_外文论文
作者单位1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
3.Chinese Acad Sci, Key Lab Digital Earth Sci, Inst Remote Sensing & Digital Earth, Beijing 100094, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Huanhuan,Wu, Chaoyang,Lu, Linlin,et al. A new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index[J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,2018,144:390-399.
APA Yuan, Huanhuan,Wu, Chaoyang,Lu, Linlin,&Wang, Xiaoyue.(2018).A new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index.ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,144,390-399.
MLA Yuan, Huanhuan,et al."A new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 144(2018):390-399.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。