Leveraging Protein Dynamics to Identify Functional Sites Models
文献类型:期刊论文
作者 | Zhu, Fei4,5; Yang, Sijie4; Meng, Fanwang3; Zheng, Yuxiang5; Ku, Xin2; Luo, Cheng1![]() |
刊名 | JOURNAL OF CHEMICAL INFORMATION AND MODELING
![]() |
出版日期 | 2022-07-25 |
卷号 | 62期号:14页码:3331-3345 |
ISSN号 | 1549-9596 |
DOI | 10.1021/acs.jcim.2c004843331J |
通讯作者 | Hu, Guang(huguang@suda.edu.cn) ; Liang, Zhongjie(zjliang@suda.edu.cn) |
英文摘要 | Accurate prediction of post-translational modifications (PTMs) is of great significance in understanding cellular processes, by modulating protein structure and dynamics. Nowadays, with the rapid growth of protein data at different ''omics'' levels, machine learning models largely enriched the prediction of PTMs. However, most machine learning models only rely on protein sequence and little structural information. The lack of the systematic dynamics analysis underlying PTMs largely limits the PTM functional predictions. In this research, we present two dynamicscentric deep learning models, namely, cDL-PAU and cDL-FuncPhos, by incorporating sequence, structure, and dynamics-based features to elucidate the molecular basis and underlying functional landscape of PTMs. cDLPAU achieved satisfactory area under the curve (AUC) scores of 0.804-0.888 for predicting phosphorylation, acetylation, and ubiquitination (PAU) sites, while cDL-FuncPhos achieved an AUC value of 0.771 for predicting functional phosphorylation (FuncPhos) sites, displaying reliable improvements. Through a feature selection, the dynamics-based coupling and commute ability show large contributions in discovering PAU sites and FuncPhos sites, suggesting the allosteric propensity for important PTMs. The application of cDL-FuncPhos in three oncoproteins not only corroborates its strong performance in FuncPhos prioritization but also gains insight into the physical basis for the functions. The source code and data set of cDL-PAU and cDL-FuncPhos are available at https://github.com/ComputeSuda/PTM_ML. |
WOS关键词 | POSTTRANSLATIONAL MODIFICATION SITES ; REGULATORY ELEMENTS ; STRUCTURAL-ANALYSIS ; SEQUENCE EVOLUTION ; UBIQUITINATION ; CROSSTALK ; MUTATIONS ; DBPTM ; TOOL |
资助项目 | Key Laboratory of Systems Biomedicine (Ministry of Education) ; Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University[KLSB2019KF-02] ; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences[SIMM2205KF-11] ; National Natural Science Foundation of China[31872723] ; National Natural Science Foundation of China[61303108] ; Natural Science Foundation of Jiangsu Province[BK20211102] ; Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions |
WOS研究方向 | Pharmacology & Pharmacy ; Chemistry ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000855024600001 |
出版者 | AMER CHEMICAL SOC |
源URL | [http://119.78.100.183/handle/2S10ELR8/302483] ![]() |
专题 | 新药研究国家重点实验室 |
通讯作者 | Hu, Guang; Liang, Zhongjie |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai 201203, Peoples R China 2.Shanghai Jiao Tong Univ, Shanghai Ctr Syst Biomed, Key Lab Syst Biomed, Minist Educ, Shanghai 200240, Peoples R China 3.McMaster Univ, Dept Chem & Chem Biol, Hamilton, ON L8S 4L8, Canada 4.Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China 5.Soochow Univ, Ctr Syst Biol, Sch Biol & Basic Med Sci, Dept Bioinformat, Suzhou 215123, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Fei,Yang, Sijie,Meng, Fanwang,et al. Leveraging Protein Dynamics to Identify Functional Sites Models[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2022,62(14):3331-3345. |
APA | Zhu, Fei.,Yang, Sijie.,Meng, Fanwang.,Zheng, Yuxiang.,Ku, Xin.,...&Liang, Zhongjie.(2022).Leveraging Protein Dynamics to Identify Functional Sites Models.JOURNAL OF CHEMICAL INFORMATION AND MODELING,62(14),3331-3345. |
MLA | Zhu, Fei,et al."Leveraging Protein Dynamics to Identify Functional Sites Models".JOURNAL OF CHEMICAL INFORMATION AND MODELING 62.14(2022):3331-3345. |
入库方式: OAI收割
来源:上海药物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。