Sparse estimation via lower-order penalty optimization methods in high-dimensional linear regression
文献类型:期刊论文
作者 | Li, Xin1; Hu, Yaohua5; Li, Chong4![]() ![]() |
刊名 | JOURNAL OF GLOBAL OPTIMIZATION
![]() |
出版日期 | 2022-09-06 |
页码 | 35 |
关键词 | Sparse optimization Lower-order penalty methods Restricted eigenvalue condition Recovery bound |
ISSN号 | 0925-5001 |
DOI | 10.1007/s10898-022-01220-5 |
通讯作者 | Hu, Yaohua(mayhhu@szu.edu.cn) |
英文摘要 | The lower-order penalty optimization methods, including the l(q) minimization method and the l(q) regularization method (0 < q <= 1), have been widely applied to find sparse solutions of linear regression problems and gained successful applications in various mathematics and applied science fields. In this paper, we aim to investigate statistical properties of the l(q) penalty optimization methods with randomly noisy observations and a deterministic/random design. For this purpose, we introduce a general q-Restricted Eigenvalue Condition (REC) and provide its sufficient conditions in terms of several widely-used regularity conditions such as sparse eigenvalue condition, restricted isometry property, and mutual incoherence property. By virtue of the q-REC, we exhibit the l(2) recovery bounds of order O( epsilon(2)) and O(lambda 2/2-q s) for the l(q) minimization method and the l(q) regularization method, respectively, with high probability for either deterministic or random designs. The results in this paper are nonasymptotic and only assume the weak q-REC. The preliminary numerical results verify the established statistical properties and demonstrate the advantages of the l(q) penalty optimization methods over existing sparse optimization methods. |
WOS关键词 | UNCERTAINTY PRINCIPLES ; LAGRANGIAN APPROACH ; VARIABLE SELECTION ; ALGORITHMIC THEORY ; SIGNAL RECOVERY ; RECONSTRUCTION ; REGULARIZATION ; LASSO ; MINIMIZATION ; LIKELIHOOD |
资助项目 | Natural Science Foundation of Shaanxi Province of China[2022JQ-045] ; National Natural Science Foundation of China[11971429] ; National Natural Science Foundation of China[12071306] ; National Natural Science Foundation of China[32170655] ; National Natural Science Foundation of China[11871347] ; Natural Science Foundation of Guangdong Province of China[2019A1515011917] ; Natural Science Foundation of Guangdong Province of China[2020B1515310008] ; Project of Educational Commission of Guangdong Province of China[2021KTSCX103] ; Project of Educational Commission of Guangdong Province of China[2019KZDZX1007] ; Natural Science Foundation of Shenzhen[JCYJ20190808173603590] ; Zhejiang Provincial Natural Science Foundation of China[LY18A010004] ; Research Grants Council of Hong Kong[PolyU 15212817] ; Science and Technology Innovation 2030 - Brain Science and Brain-Inspired Intelligence Project of China[2021ZD0200200] |
WOS研究方向 | Operations Research & Management Science ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000849996100001 |
出版者 | SPRINGER |
资助机构 | Natural Science Foundation of Shaanxi Province of China ; National Natural Science Foundation of China ; Natural Science Foundation of Guangdong Province of China ; Project of Educational Commission of Guangdong Province of China ; Natural Science Foundation of Shenzhen ; Zhejiang Provincial Natural Science Foundation of China ; Research Grants Council of Hong Kong ; Science and Technology Innovation 2030 - Brain Science and Brain-Inspired Intelligence Project of China |
源URL | [http://ir.ia.ac.cn/handle/173211/50035] ![]() |
专题 | 自动化研究所_脑网络组研究中心 |
通讯作者 | Hu, Yaohua |
作者单位 | 1.Northwest Univ, Sch Math, Xian 710069, Peoples R China 2.Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China 3.Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China 4.Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China 5.Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Coll Math & Stat, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Xin,Hu, Yaohua,Li, Chong,et al. Sparse estimation via lower-order penalty optimization methods in high-dimensional linear regression[J]. JOURNAL OF GLOBAL OPTIMIZATION,2022:35. |
APA | Li, Xin,Hu, Yaohua,Li, Chong,Yang, Xiaoqi,&Jiang, Tianzi.(2022).Sparse estimation via lower-order penalty optimization methods in high-dimensional linear regression.JOURNAL OF GLOBAL OPTIMIZATION,35. |
MLA | Li, Xin,et al."Sparse estimation via lower-order penalty optimization methods in high-dimensional linear regression".JOURNAL OF GLOBAL OPTIMIZATION (2022):35. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。